
Monte Carlo Methods
Parallelization Strategies

Dieter W. Heermann

Heidelberg University

December 7, 2020

1 / 27

Parallelization Strategies

1 The Cruical Step: Decomposing the Problem

2 A Generic Model to Study the Decomposition

3 Embarrassingly Parallelizable Monte Carlo

4 Geometric Decomposition

5 Vectorization Principles

6 Master-Slave Paradigm

7 Conclusions

8 Literature

2 / 27

Decomposing the Problem I

The motivation to parallelize the algorithms for the treatment of science problems is
manifold:

It ranges from being able to gather better statistics,

speeding up an application,

real time visualization,

to be able to simulate rather large systems,

...

3 / 27

Decomposing the Problem II

In general we can say that there are several types of parallelism inherent in problems.
These are:

Independence: The entities do not interact at all.

Time correlated: The entities are correlated in time

Space correlated: The entities are correlated in space

4 / 27

Decomposing the Problem III

One can distinguish between the following general concepts

Poor man’s parallelization

Data parallelization

Algorithmic parallelization

Domain decomposition

Master-Slave paradigm

These make use of the independence relations that are naturally associated with any
problem.

5 / 27

The Ising model I

The Ising model (1) is defined as follows:

Let G = Ld be a d-dimensional lattice.

Associated with each lattice site i is a spin si which can take on the values +1 or
−1.
The spins interact via an exchange coupling J. In addition, we allow for an
external field H.

The Hamiltonian reads

H = −J
∑
〈i,j〉

si sj + µH
∑
i

si (1)

The first sum on the right-hand side of the equation runs over nearest neighbours
only.

The symbol µ denotes the magnetic moment of a spin. If the exchange constant
J is positive, the Hamiltonian is a model for ferromagnetism, i.e., the spins tend
to align parallel.

For J negative the exchange is anti ferromagnetic and the spins tend to align
antiparallel. In what follows we assume a ferromagnetic interaction J > 0.

6 / 27

i

7 / 27

Metropolis-Hastings Monte Carlo I

The simplest and most convenient choice for the actual simulation is a transition
probability involving only a single spin; all other spins remain fixed.

It should depend only on the momentary state of the nearest neighbours.

After all spins have been given the possibility of a flip a new state is created.
Symbolically, the single-spin-flip transition probability is written as

Wi (si) : (s1, ..., si , ..., sN) −→ (s1, ...,−si , ..., sN)

where Wi is the probability per unit time that the ith spin changes from si to −si .
With such a choice the model is called the single-spin-flip Ising model (Glauber).

Let P(s) be the probability of the state s. In thermal equilibrium at the fixed
temperature T and field K , the probability that the i-th spin takes on the value si
is proportional to the Boltzmann factor

Peq(si) =
1
Z
exp

(
−H(si)

kBT

)
The fixed spin variables are suppressed.

8 / 27

Metropolis-Hastings Monte Carlo II

We require that the detailed balance condition be fulfilled:

Wi (si)Peq(si) = Wi (−si)Peq(−si)

or

Wi (si)

Wi (si)
=

Peq(−si)
Peq(si)

It follows that

Wi (si)

Wi (si)
= exp(−∆H/kBT)

The derived conditions do not uniquely specify the transition probability W .

The Metropolis function

Wi (si) = min
{
τ−1, τ−1exp(−∆H/kBT)

}
and the Glauber function

Wi (si) =
(1− si tanhEi/kBT)

2τ
where τ is an arbitrary factor determining the time scale.

9 / 27

Algorithm: Metropolis-Hastings Monte Carlo

Algorithmically the Metropolis MC method looks as follows:

Algorithm 1 Metropolis-Hastings Monte Carlo Method

1: Specify an initial configuration.
2: Choose a lattice site i .
3: Compute Wi .
4: Generate a random number R ∈ [0, 1].
5: if Wi (si) > R then
6: si → −si
7: else
8: Otherwise, proceed with Step 2 until MCSMAX attempts have been made.
9: end if

10 / 27

Program (Java): Ising Model MC

Java program can be found here

11 / 27

http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/index.htm

Program (C): Ising Model MC

Page 1 of 2ising3d.c
Printed For: Heermann

#include <iostream.h>
#include <math.h>

define L 10

int main(int argc, char *argv[])
{
 int mcs,i,j,k,ip,jp,kp,in,jn,kn;
 int old_spin,new_spin,spin_sum;
 int old_energy,new_energy;
 int mcsmax;
 int spin[L][L][L];
 int seed;
 double r;
 double beta;
 double energy_diff;
 double mag;

mcsmax = 100;
beta = 0.12; // beta = J/kT KC = 0.2216544 Talapov and Blöte (1996)
seed = 4711;

srand(seed);
 for (i=0;i<L;i++) {
 for (j=0;j<L;j++) {
 for (k=0;k<L;k++) {

 spin[i][j][k] = -1;
 }
 }
 }
mag = - L*L*L;

 // Loop over sweeps
 for (mcs=0;mcs<mcsmax;mcs++) {

 // Loop over all sites
 for (i=0;i<L;i++) {
 for (j=0;j<L;j++) {
 for (k=0;k<L;k++) {

 // periodic boundary conditions
 ip = (i+1) % L;
 jp = (j+1) % L;
 kp = (k+1) % L;
 in = (i+L-1) % L;
 jn = (j+L-1) % L;
 kn = (k+L-1) % L;

 old_spin = spin[i][j][k];
 new_spin = - old_spin;

 // Sum of neighboring spins
 spin_sum = spin[i][jp][k] + spin[ip][j][k] +
 spin[i][jn][k] + spin[in][j][k] +
 spin[i][j][kn] + spin[i][j][kp];

 old_energy = - old_spin * spin_sum;
 new_energy = - new_spin * spin_sum;
 energy_diff = beta * (new_energy - old_energy);

The C program can be found here

12 / 27

http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/ising3d.c

0 0,5 1 1,5 2
T/Tc

0

0,2

0,4

0,6

0,8

1
|m

|

L = 5
L = 10
L = 15
L = 20
L = 30

3D Ising Model
Magnetization vs. Temperature

13 / 27

Ising Model MC (continued)

The Ising model can also be studied using the formulation of a random cluster
model (5) with the partition function

Z =
∑
C

B(β,C)2n(C) . (2)

In this formulation the clusters are independent but stretch over the entire lattice.
We have lost the locality inherent in the original formulation.

This implies that the lattice does not partition into independent sublattices!

The formulation of the model can play a central role whether one can parallelize a
problem to a good degree

This does imply that the better parallelized problem is not necessarily more
efficient!

We should not confuse efficiency and effectiveness

14 / 27

Embarrassingly Parallelizable Monte Carlo

Today, the most often used parallelization is presumably the so called poor man’s
parallelization or also called embarrassingly parallelizable problem
An application is embarrassingly parallel if its parallel implementation

can straightforwardly be broken up into roughly equal amounts of work per
processor,

has minimal communication overhead among processors.

In the poor man’s parallelization a given code is replicated as many times as there
are processors.

Each program on a processor executes independently from the other copies.

No communication beside the input/output of results is necessary, that is, the
programs or processes on different processors do not communicate with each
other.

The efficiency with which the processors are used is 100 percent.

For the gathering of statistics in Monte Carlo problems, this concept is very well suited.

15 / 27

In the poor mans parallelization a production code for a single processor machine is
distributed in identical copies to the number of available or desired processors. All
execute concurrently without communication among the copies.

16 / 27

Geometric (Domain) Decomposition

Divide the computational domain into n equally-sized sub-domains.
Strip Decomposition

P
1

P
2

P
3

P
4

17 / 27

Usually we have to take into account periodic boundary conditions

P
1

P
2

P
3

P
4

18 / 27

19 / 27

Typically, each site in a multi-dimensional geometry is updated with contributions
from a subset of its neighbors (Stencil computations)

One must ensure at all times that processors owning neighboring sub-domains do not
update adjacent sites simultaneously. (detailed balance)

20 / 27

The message passing paradigm provides a simple way to implement the lattice updates
without violating data dependencies.

21 / 27

The efficiency of geometric decomposition methods is strongly affected by the
heterogeneity and variability present in the underlying hardware.

The processors are tightly coupled by the communication phases.

Due to the Monte Carlo method (and due to load fluctuations in a domain) the
execution time is constraint by the slowest processor.

SMP architecture may effect execution time due to competition for memory
resources.

22 / 27

Vectorization

Example: Vectorizing the Ising Model
Use the checker board idea to ensure that detailed balance is fulfilled (see (7))

23 / 27

Vectorization

Vectorized Ising Model run on the FACOM VP-100 Series (see Historical computers in
Japan)

c
c--------2dvp100--
c
c program : monte carlo of the two dimensional ising model
c
c algorithm : based on the skewed numbering of the two sub-
c lattices vectorization is possible (w. oed, angw.
c inf. 7,358 (1982).
c
c machine : vp100
c
c remarks : the lattice dimension l must always by a
c multiple of 2
c
c author : dieter w. heermann
c
c version 1.0 december 1986
c
c last test : 13/3/87
c
c--
c
 dimension subl1(1:465),subl2(1:465)
 dimension vec1(1:465),vec3(1:465)
 dimension rvec(1:450)
 dimension ranf(1:450)
 dimension tb(-4:4)
c
 integer subl1,subl2
 integer vec1,vec3
 integer vl,vlp1,lh
 integer offs1,offs2
c
 real tb
 real jkt,ttc
c
c simulation parameters
c =====================
c
 l = 10
 read(5,*) l
 maxmcs = 300
 ttc = 0.95
 read(5,*) ttc
 iseed1 = 51
 iseed2 = 514
 read(5,*) iseed1
 read(5,*) iseed2
c
 write(6,*) 'system size is = ',l
 write(6,*) 'temperature is = ',ttc
 write(6,*) 'monte carlo steps = ',ttc

c
c set up parameters
c =================
c
 jkt = 0.4406867935 / ttc
 vlp1 = (l + 1) * l / 2
 vl = l * l / 2
 lh = l/2

24 / 27

http://museum.ipsj.or.jp/en/computer/super/0005.html
http://museum.ipsj.or.jp/en/computer/super/0005.html

The master initially distributes one task to every slave.

The slaves compute their tasks and send the results back to the master,

Each slave triggers the master to send additional tasks.

This is self-scheduling, demand-driven or first-come first-served (FCFS).

FCFS is not efficient when point-to- point communication times are
heterogeneous.

25 / 27

Conclusions

Monte Carlo algorithms can be converted from serial to parallel algorithms.

Vectorization can often be achieved.

Random number algorithms are very important!

26 / 27

[1] E. Ising: Z. Phys. 31,253 (1925)

[2] D.W. Heermann and A.N. Burkitt, Parallel Algorithms of Computational
Science Problems Springer Verlag, Heidelberg 1990

[3] K. Binder and D.W. Heermann, The Monte Carlo Method in Statistical
Physics: An Introduction Springer Verlag, Heidelberg 1988

[4] D.W. Heermann, Computer Simulation Methods in Theoretical Physics,
Springer Verlag, Heidelberg 1986

[5] C.M. Fortuin and P.W. Kastelyn Physica 50, 297 (1972)

[6] W. Janke and R. Villanova. Ising model on three-dimensional random lattices: A
Monte Carlo study. Physical Review B , 66(13):134208 (2002)

[7] W. Oed: Angew. Inf. 7/82, 358 (1982)

27 / 27

	The Cruical Step: Decomposing the Problem
	A Generic Model to Study the Decomposition
	Embarrassingly Parallelizable Monte Carlo
	Geometric Decomposition
	Vectorization Principles
	Master-Slave Paradigm
	Conclusions
	Literature

