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Decomposing the Problem | .
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The motivation to parallelize the algorithms for the treatment of science problems is
manifold:

m It ranges from being able to gather better statistics,
m speeding up an application,

m real time visualization,

m to be able to simulate rather large systems,
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Decomposing the Problem |l .

In general we can say that there are several types of parallelism inherent in problems.
These are:

m Independence: The entities do not interact at all.
m Time correlated: The entities are correlated in time

m Space correlated: The entities are correlated in space
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Decomposing the Problem IlI .xg“ggﬁ.&,g
One can distinguish between the following general concepts
m Poor man's parallelization
m Data parallelization
m Algorithmic parallelization
m Domain decomposition
m Master-Slave paradigm

These make use of the independence relations that are naturally associated with any
problem.
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The Ising model | .:sszzrss:;

The Ising model (1) is defined as follows:
m Let G = L9 be a d-dimensional lattice.

m Associated with each lattice site / is a spin s; which can take on the values +1 or
—1.

m The spins interact via an exchange coupling J. In addition, we allow for an
external field H.

m The Hamiltonian reads

H:—JZs;sj-i-uHZs; (1)
(iJ) i
m The first sum on the right-hand side of the equation runs over nearest neighbours
only.

m The symbol u denotes the magnetic moment of a spin. If the exchange constant
J is positive, the Hamiltonian is a model for ferromagnetism, i.e., the spins tend
to align parallel.

m For J negative the exchange is anti ferromagnetic and the spins tend to align
antiparallel. In what follows we assume a ferromagnetic interaction J > 0.
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Metropolis-Hastings Monte Carlo | .

m The simplest and most convenient choice for the actual simulation is a transition
probability involving only a single spin; all other spins remain fixed.

m |t should depend only on the momentary state of the nearest neighbours.

m After all spins have been given the possibility of a flip a new state is created.
Symbolically, the single-spin-flip transition probability is written as

Wi(si) : (51, s Siy ey SN) — (S15 00y —Siy oy SN)
where Wi, is the probability per unit time that the ith spin changes from s; to —s;.

m With such a choice the model is called the single-spin-flip Ising model (Glauber).

m Let P(s) be the probability of the state s. In thermal equilibrium at the fixed
temperature T and field K, the probability that the i-th spin takes on the value s;
is proportional to the Boltzmann factor

Peots) = g ep (o))

The fixed spin variables are suppressed.
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Metropolis-Hastings Monte Carlo I .

m We require that the detailed balance condition be fulfilled:
Wi(si)Peq(si) = Wi(—si)Peq(—si)
or

Wi(si) _ Peq(=si)
Wi(s;) Peq(si)

m It follows that
Wi(s;)
Wi (si)

m The derived conditions do not uniquely specify the transition probability W.

=exp(—AH/kgT)

m The Metropolis function
Wi(s;)) = min {71, 7 texp(~AH /kg T)}
m and the Glauber function

(]. — sjtanh E,'/kB T)
27
where 7 is an arbitrary factor determining the time scale.

W(si) =
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Algorithm: Metropolis-Hastings Monte Carlo .

Algorithmically the Metropolis MC method looks as follows:

Algorithm 1 Metropolis-Hastings Monte Carlo Method

1: Specify an initial configuration.

2: Choose a lattice site i.

3: Compute W;.

4. Generate a random number R € [0, 1].

s5: if Wi(s;) > R then

6: Sj — —Sj

7: else

8:  Otherwise, proceed with Step 2 until MCSMAX attempts have been made.
o: end if
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Program (Java): Ising Model MC .%ﬁ.{%

Java program can be found here
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http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/index.htm

Program (C): Ising Model MC
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The C program can be found here

#include <iostream.h>
#include <math.h>

# define L 10

int  main(int arge, char *argv(])
«
int mes, 1,3,k ip, Ip,kp, in, 3n, kn;
int 0ld spin,new_spin, spin_sum;
int old_energy,new_energy;

double energy_diff;
double mag;

mesmax = 100;

beta = 0.12; / beta = J/KT KC = 0.2216544 Talapov and Blite (1996)
seed = 4711;

srand(seed);

0;i<Lith) {

for (3=0;3<Li3+h)
FkeLikes)

spEn(410310K] = -
)
}
mag = - LLaL;

// Loop over sweeps
For (mese0;mes<mosmax;mes+e) (

over all sites

for (k=0ik<Liks+) {

// periodic boundary conditions

old_spin = spin(i](3](k];
new_spin

Sum of neighboring spis

spin_sum = spin(i](3jp](k] + spmupnmkl +
spin(i](3n](k] + spin(in](3] [k

SRR ke <+ epinti1 101 tkeT7

01d_energy = - old_spin * spin_sus; 12 /27
Y oo L pinem


http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/ising3d.c
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Ising Model MC (continued) .x?m.g;g

The Ising model can also be studied using the formulation of a random cluster
model (5) with the partition function

Z=>"B(B,C)2") . )
C

m In this formulation the clusters are independent but stretch over the entire lattice.
We have lost the locality inherent in the original formulation.

m This implies that the lattice does not partition into independent sublattices!

m The formulation of the model can play a central role whether one can parallelize a
problem to a good degree

This does imply that the better parallelized problem is not necessarily more
efficient!

We should not confuse efficiency and effectiveness
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Embarrassingly Parallelizable Monte Carlo .

Today, the most often used parallelization is presumably the so called poor man's
parallelization or also called embarrassingly parallelizable problem
An application is embarrassingly parallel if its parallel implementation

m can straightforwardly be broken up into roughly equal amounts of work per
processor,

m has minimal communication overhead among processors.

m In the poor man's parallelization a given code is replicated as many times as there
are processors.

m Each program on a processor executes independently from the other copies.

m No communication beside the input/output of results is necessary, that is, the
programs or processes on different processors do not communicate with each
other.

m The efficiency with which the processors are used is 100 percent.

For the gathering of statistics in Monte Carlo problems, this concept is very well suited.
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INDEPENDENT PROCESSOR

SERIAL CODE

In the poor mans parallelization a production code for a single processor machine is
distributed in identical copies to the number of available or desired processors. All
execute concurrently without communication among the copies.
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Geometric (Domain) Decomposition .
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Divide the computational domain into n equally-sized sub-domains.
Strip Decomposition
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Usually we have to take into account periodic boundary conditions .

NN NN
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Typically, each site in a multi-dimensional geometry is updated with contributi
from a subset of its neighbors (Stencil computations)

A

AN
=

Y

One must ensure at all times that processors owning neighboring sub-domains do not
update adjacent sites simultaneously. (detailed balance)
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The message passing paradigm provides a simple way to implement the lattice L-y—
without violating data dependencies. e
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The efficiency of geometric decomposition methods is strongly affected by. AL
heterogeneity and variability present in the underlying hardware. ‘

The processors are tightly coupled by the communication phases.

Due to the Monte Carlo method (and due to load fluctuations in a domain) the
execution time is constraint by the slowest processor.

SMP architecture may effect execution time due to competition for memory
resources.
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Vectorization . e

Example: Vectorizing the Ising Model
Use the checker board idea to ensure that detailed balance is fulfilled (see (7))
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Vectorization . e

Vectorized Ising Model run on the FACOM VP-100 Series (see Historical computers in
Japan)

11(15465) sun12 11465
e (riies)

den s
DU
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http://museum.ipsj.or.jp/en/computer/super/0005.html
http://museum.ipsj.or.jp/en/computer/super/0005.html

The master initially distributes one task to every slave. . Egizéfsxé
The slaves compute their tasks and send the results back to the master, 4
Each slave triggers the master to send additional tasks.

This is self-scheduling, demand-driven or first-come first-served (FCFS).

FCFS is not efficient when point-to- point communication times are
heterogeneous.
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Conclusions . e

m Monte Carlo algorithms can be converted from serial to parallel algorithms.
m Vectorization can often be achieved.

m Random number algorithms are very important!
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