

Monte Carlo Methods Special Purpose Hardware and Machines for Monte Carlo

Dieter W. Heermann

Heidelberg University

December 14, 2020

Special Purpose Hardware and Machines for Monte Carlo

1 Special-Processor Machines

2 From Vector to Multi-Processor Machines

2/26

Application areas I

- Image Processing and Pattern Recognition
- Molecular Modelling
- VLSI Design (Optimization)
- Speech Processing
- Computational Physics / Biology / ...
- Financial Modelling
- Cellular Automata / Percolation (oil recovery)

Technologies I

- VLSI Systems
- Field Programmable Gate Arrays

On the hardware level machines were build to support concurrency. Examples are

- The Delft machine (5) (Delft Ising System Processor: DISP) that reflects in a direct way the structure of the Monte Carlo algorithm or
- The machine build by the Santa-Barbara group (6). The Santa Barbara architecture allows to exploit the inherent parallelism of Monte Carlo Ising simulations that result from the data structure and the condition of detailed balance. Instead of using just one processor, one can include many more so that one can update spins in parallel. The processor as such reflects, similar to the Delft computer, the structure of the Monte Carlo algorithm. The Santa Barbara machine optimizes the performance exploiting the data structure and the algorithmic structure.

Technologies II

FIG. 1. The functional organisation of the Delft Monte Carlo processor for Ising systems.

Figure taken from: A special-purpose processor for the Monte Carlo simulation of ising spin systems, A. Hoogland, J. Spaa, B. Selman and A. Compagner, Journal of Computational Physics Volume 51, Issue 2, August 1983, Pages 250-260

Technologies III

FIG. 2. One of the 64 identical parts of the spin memory, each with its own neighbour identification and decoding section.

Figure taken from: A special-purpose processor for the Monte Carlo simulation of ising spin systems, A. Hoogland, J. Spaa, B. Selman and A. Compagner, Journal of Computational Physics Volume 51, Issue 2, August 1983, Pages 250-260

Technologies IV

FIG. 2. Photograph of the Monte Carlo computer. Three larger boards on the left constitute the special processor described in Sec. III.

Figure taken from: Fast special purpose computer for Monte Carlo simulations in statistical physics, J. H. Condon and A. T. Ogielski, Rev. Sci. Instrum. 56, 1691 (1985); doi:10.1063/1.1138125 (6 pages)

Technologies V

FIG. 1. Architecture of the special purpose computer for Monte Carlo simulations.

Figure taken from: Fast special purpose computer for Monte Carlo simulations in statistical physics, J. H. Condon and A. T. Ogielski, Rev. Sci. Instrum. 56, 1691 (1985); doi:10.1063/1.1138125 (6 pages)

FIG. 6. Block diagram of the spin updating pipeline. The data from the serial input buffer registers are shifted into the decoder; the new updated spins accumulated in the parallel output buffer are written back to the memory.

Figure taken from: Fast special purpose computer for Monte Carlo simulations in statistical physics, J. H. Condon and A. T. Ogielski, Rev. Sci. Instrum. 56, 1691 (1985); doi:10.1063/1.1138125 (6 pages)

Technologies VII

Fig. 1. Schematic view of the full d = 3 machine.

Figure taken from: SUE: A special purpose computer for spin glass models, A. Cruz, J. Pech, A. Tarancon, P. Tellezc, C.L. Ulloda, C. Ungil, Computer Physics Communications 133 (2001)

Technologies VIII

A. Cruz et al. / Commuter Physics Communications 133 (2001) 165-176

Figure taken from: SUE: A special purpose computer for spin glass models, A. Cruz, J. Pech, A. Tarancon, P. Tellezc, C.L. Ulloda, C. Ungil, Computer Physics Communications 133 (2001)

Technologies IX

Fig. 3. Demon algorithm pipeline implemented in the UPDATE devices.

Figure taken from: SUE: A special purpose computer for spin glass models, A. Cruz, J. Pech, A. Tarancon, P. Tellezc, C.L. Ulloda, C. Ungil, Computer Physics Communications 133 (2001)

Figure taken from: A 281 Tflops Calculation for X-ray Protein Structure Analysis with Special-Purpose Computers MDGRAPE-3, SC07 November 10-16, 2007, Reno, Nevada, USA (c) 2007 ACM 978-1-59593-764-3/07/0011

Technologies XI

Figure 2: Block diagram (left) and photograph (right) of MDGRAPE-3 system used in the present work. It is composed of a host computer MDGRAPE-3 system. The host computer is a 174 dual-core CPU cluster of Intel Xeon processors. MDGRAPE-3 system consists of 348 boards with 12 MDGRAPE-3 chips and its peak performance is 302 Tflops.

Figure taken from: A 281 Tflops Calculation for X-ray Protein Structure Analysis with Special-Purpose Computers MDGRAPE-3, SC07 November 10-16, 2007, Reno, Nevada, USA (c) 2007 ACM 978-1-59593-764-3/07/0011

Technologies XII

Figure taken from: Jean-Marie Normand, PERCOLA : A Special Purpose Programmable 64-Bit Floating-Point Processor, Proceeding, ICS 88 Proceedings of the 2nd international conference on Supercomputing ACM New York, NY, USA 1988 GPU I

Figure taken from: http://en.wikipedia.org/wiki/Graphics_processing_unit Graphics cards are optimized for floating point arithmetic General Purpose Programming on a GPU

Use CUDA/OpenCL

- OpenCL is an open standard supported by all modern graphics card manufacturers that allows access to the graphics cards computing abilities.
- CUDA is a set of extensions on top of OpenCL specific to nVidia graphics cards

Figure taken from: The 2D Ising Model on GPU Clusters, Benjamin Block, University of Mainz, Institute for Physics

From Vector to Multi-Processor Machines I

Figure taken from: http://en.wikipedia.org/wiki/Cray-1

Transputer

Figure taken from: http://en.wikipedia.org/wiki/Transputer

Transputer


```
SEQ i = 0 FOR nop
 SEQ
    pass.x[i] := x[i]
   pass.y[i] := y[i]
    pass.z[i] := z[i]
---
-- calculate forces on the particles within the processor
---
SEQ packet = 0 FOR MaxPackets
  SEO
    -- send and receive the next packet
    SEQ i = 0 FOR nop
      PAR
        ToRight ! pass.x[i];pass.y[i];pass.z[i]
        FromLeft ? got.x[i] ; got.y[i]; got.z[i]
    SEQ i = 0 FOR nop
      SEQ j = 0 FOR nop
        SEO
          xd := x[i] - got.x[j]
         yd := y[i] - got.y[j]
          zd := z[i] - got.z[j]
```

Tianhe-1A

Figure taken from: http://supercom.org/tag/supercomputer-tianhe-1a/

The APE machine

The APE Collaboration / Nuclear Physics B (Proc. Suppl.) 140 (2005) 176-182

Table 1

The family of APE processors. The year in parenthesis is the time when the project was concluded. Physics runs in general have started quite earlier on prototypes or small scale machines.

	APE(1988)[1]	APE100(1993)[2]	APEmille(1999)[3]	apeNEXT(2004)[4]
Architecture	SISAMD	SISAMD	SIMAMD	SPMD
Number of nodes	16	2048	2048	4096
Topology	flexible 1D	rigid 3D	flexible 3D	flexible 3D
Memory	$256 \mathrm{MB}$	8 GB	64 GB	1 TB
Registers (Word Size)	64(32)	128(32)	512(32)	512(64)
Clock speed	$8 \mathrm{~MHz}$	$25 \mathrm{MHz}$	66 MHz	$200 \mathrm{~MHz}$
Peak speed	1 GFlops	100 GFlops	1 TFlops	7 TFlops

Figure taken from: The apeNEXT project, Nuclear Physics B - Proceedings Supplements Volume 140, March 2005, Pages 176-182 LATTICE 2004 - Proceedings of the XXIInd International Symposium on Lattice Field Theory 177

Figure 4. The apeNEXT architecture I.

Figure taken from: The apeNEXT project, Nuclear Physics B - Proceedings Supplements Volume 140, March 2005, Pages 176-182 LATTICE 2004 - Proceedings of the XXIInd International Symposium on Lattice Field Theory

Figure 3. Block diagram of the apeNEXT processor.

Figure taken from: The apeNEXT project, Nuclear Physics B - Proceedings Supplements Volume 140, March 2005, Pages 176-182 LATTICE 2004 - Proceedings of the XXIInd International Symposium on Lattice Field Theory

Figure 5. The apeNEXT architecture II.

Figure taken from: The apeNEXT project, Nuclear Physics B - Proceedings Supplements Volume 140, March 2005, Pages 176-182 LATTICE 2004 - Proceedings of the XXIInd International Symposium on Lattice Field Theory

Literature I

- H. J. Hilhorst, A. F. Bakker, C. Bruin, A. Compagner, and A. Hoogland, Special Purpose Computers in Physics, Journal of Statistical Physics, Vol. 34, Nos. 5/6, 1984
- [2] D.W. Heermann and A.N. Burkitt, Parallel Algorithms of Computational Science Problems Springer Verlag, Heidelberg 1990
- [3] K. Binder and D.W. Heermann, The Monte Carlo Method in Statistical Physics: An Introduction Springer Verlag, Heidelberg 1988
- [4] D.W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer Verlag, Heidelberg 1986
- [5] A.Hoogland, J. Spaa, B. Selman, and A. Compagner, J. Comput. Phys. 51, 250 (1983)
- [6] R.Pearson, J.L. Richardson, and D. Toussaint, J. Comput. Phys. 51, 241 (1983)
- [7] D.J. Auerbach, A.F. Bakker, T.C. Chen, A.A. Munshi, W.J. Paul, *Mat. Res. Soc. Symp. Proc.* 63, 219 (1985)
 - D.J. Auerbach, W. Paul, A.F. Bakker, C. Lutz, W.E. Rudge, and F.F. Abraham, J. Phys. Chem. **91**, 4881-4890 (1987)
- [8] Jean-Marie Normand, PERCOLA : A Special Purpose Programmable 64-Bit Floating-Point Processor, Proceeding, ICS '88 Proceedings of the 2nd international conference on Supercomputing ACM New York, NY, USA 1988