## The Monte Carlo Method: Bayesian Networks

Dieter W. Heermann

Monte Carlo Methods

2015

2015

- Graphical display of dependence structure between multiple interacting quantities (expression levels of different genes).
- Probabilistic semantics: Fits the stochastic nature of both the biological processes and noisy experiments. Capable of handling noise and estimating the confidence in the different features of the network.
- Due to lack of data: Extract features that are pronounced in the data rather than a single model that explains the data.
- Random variable  $X_i$  = measured expression level of gene i represented by nodes.
- Edges = regulatory interactions between genes.



3 / 1

- Define the functional form of the conditional distributions (e.g. multinomial for discrete variables, linear Gaussian for continuous variables).
  - Find the best network structure S
  - Given a network structure, find the best set of parameters for the conditional distributions (the most probable structure/parameter vector given the data)

4 / 1

Graphic representation of a joint distribution over a set of random variables A, B, C, D, E.

$$P(A, B, C, D, E) = P(A) * P(B) * P(C|A) * P(D|A, B) * P(E|D)$$



**Example:** Nodes represent gene expression while edges encode the interactions (cf. inhibition, activation)

- Given a set of random variables  $X = (X_1, ..., X_n)$ , a Bayesian network is defined as a pair  $BN = (S, \theta)$ , where
  - S is a directed acyclic graph (DAG), which is a graphical representation of the conditional independencies between variables in X
  - heta is the set of parameters for the conditional probability distributions of these variables.
  - In a Bayesian network, the probability of a state  $x = (x_1, x_2, ..., x_n)$  is factored as

$$P(x) = P(x_1|pa(x_1))P(x_2|pa(x_2))...P(x_n|pa(x_n)),$$

where pa(x) denotes the parents of node x in the graph S



6 / 1

Consider a microarray  $(D_{ij})$ , whose rows  $(D_{i.})$  correspond to genes and whose columns  $(D_{.j})$  correspond to probes (tissue samples, experiments, etc.)



|      |       | Colu  | mn    |       |
|------|-------|-------|-------|-------|
|      | 1.68  | -0.51 | -1.92 | -2.15 |
|      | -0.28 | -0.44 | 0.15  | 0.22  |
|      | -1.99 | -1.1  | 1.44  | 1     |
|      | -1.7  | -0.88 | 1.27  | 1.87  |
|      | -1.21 | -0.73 | -1.24 | -0.76 |
| _    | -2.7  | -0.12 | 2.69  | 2.28  |
| mRNA | -1.03 | -0.13 | 1.2   | 1.23  |
|      | -0.05 | -0.27 | -0.3  | -0.06 |
|      | -1.06 | -0.12 | 1.16  | 1.19  |
|      | -0.56 | -0.79 | -0.85 | -0.52 |
|      | 0.12  | -0.26 | -0.36 | -0.4  |
|      | -0.46 | -0.79 | -0.12 | -0.45 |
|      | -0.01 | 0.31  | -0.34 | -0.46 |
|      | -1.02 | -0.03 | -0.13 | 0.07  |
|      | -0.65 | -0.34 | -0.02 | -0.04 |
|      | -1.01 | -0.68 | -0.26 | -0.47 |
|      | -2.03 | -0.39 | 0.33  | 1.28  |
|      |       |       |       |       |

A real value is coming from one spot and tells if the concentration of a specific mRNA is higher(+) or lower(-) than the normal value

- A Bayesian network should be a DAG (Direct Acyclic Graph).
- Random variable X<sub>i</sub> = measured expression level of gene i. Arcs = regulatory interactions between genes.
- However, there are lots regulatory networks having directed cycles.
- Solve this by expanding into the time direction



Use DBN (Dynamic Bayesian Networks: BN with constraints on parents and children nodes) for sequential gene expression data

 We are looking for a Bayesian network that is most probable given the data D (gene expression)

$$BN^* = \operatorname{argmax}_{BN} \{ P(BN|D) \}$$

where

$$P(BN|D) = \frac{P(D|BN)P(BN)}{P(D)}$$

- There are many networks. An exhaustive search and scoring approach for the different models will not work in practice (the number of networks increases super-exponentially,  $O(2^{n^2})$  for dynamic Bayesian networks)
- Idea: Sample the networks such that we eventually have sampled the most probable networks



## Monte Carlo

Recall detailed balance condition for Monte Carlo

$$P(BN_{old}|D)P(BN_{old} \rightarrow BN_{new}|D) = P(BN_{new}|D)P(BN_{new} \rightarrow BN_{old}|D)$$

Let us look at

$$P(BN|D) = \frac{P(D|BN)P(BN)}{P(D)}$$

 Assume P(BN) is uniformly distributed (We could incorporate knowledge)

- Choose next BN with probability  $P(BN_{new})$
- Accept the new BN with the following Metropolis-Hastings accept/rejection criterion:

$$\begin{split} P &= & \min \left\{ 1, \frac{P(BN_{\text{new}}|D)P(BN_{\text{new}} \rightarrow BN_{\text{old}}|D)}{P(BN_{\text{old}}|D)P(BN_{\text{old}} \rightarrow BN_{\text{new}}|D)} \right\} \\ &= & \min \left\{ 1, \frac{P(D|BN_{\text{new}})P(BN_{\text{new}})P(D)}{P(D|BN_{\text{old}})P(BN_{\text{old}})P(D)} \right\} \\ &= & \min \left\{ 1, \frac{P(D|BN_{\text{new}})P(BN_{\text{new}})}{P(D|BN_{\text{old}})P(BN_{\text{old}})} \right\} \\ &= & \min \left\{ 1, \frac{P(D|BN_{\text{new}})}{P(D|BN_{\text{old}})} \right\} \end{split}$$

## Discrete model

- Even though the amount of mRNA or protein levels, for example, can vary in a scale that is most conveniently modeled as continuous, we can still model the system by assuming that it operates with functionally discrete states
  - activated / not activated (2 states)
  - under expressed / normal / over expressed (3 states)
- Discretization of data values can be used to compromise between the
  - averaging out of noise
  - · accuracy of the model
  - complexity/accuracy of the model/parameter learning
- Qualitative models can be learned even when the quality of the data is not sufficient for more accurate model classes

- Let  $N_{ijk}$  be the number of times we observe variable/node i in state k given parent node configuration j
- Summarize the number of total number of observations for variable *i* with parent node configuration *j*,

$$N_{ij} = \sum_{k=1}^{r_i} N_{ijk}$$

- Since our states are discrete we use a multinomial distribution
- the ML estimate of multinomial probabilities is obtained by the normalized counts

$$\hat{\theta}_{ijk} = \frac{N_{ijk}}{N_{ii}}$$



• A convenient prior distribution to choose for the parameters  $\theta$  is given by the Dirichlet distribution

$$(\theta_{ij1},...,\theta_{ijr_i}) \sim \mathsf{Dirichlet}(\alpha_{ij1},...,\alpha_{ijr_i})$$

The Dirichlet distribution has PDF

$$f(\theta_{ij1},...\theta_{ijr_i};\alpha_{ij1},...\alpha_{ijr_i}) = \frac{1}{B(\alpha_{ij})} \prod_{i=1}^{r_i} \theta_{ijr_i}^{\alpha_{ijr_i}-1}$$

with  $\theta_{iir_i} \geq 0, \sum_i \theta_{iir_i} = 1$  and hyperparameters  $\alpha_{iir} > 0, \alpha_{ii} = \sum_{k} \alpha_{iir}$ 

 The normalization constant, the Beta function, can be expressed using the gamma function

$$B(\alpha_{ij}) = \frac{\prod_{k=1}^{r_i} \Gamma(\alpha_{ijr_i})}{\Gamma(\alpha_{ij})}$$

- The convenience arises from the fact that the distribution is conjugate to the multinomial distribution, i.e., if  $P(\theta)$  is Dirichlet and  $P(X|\theta)$  is multinomial, then  $P(\theta|X)$  is Dirichlet as well
- The multinomial distribution is given (for  $N_{ij} = \sum_k N_{ijk}$ ) by

$$f(N_{ij1},...,N_{ijr_i}|N_{ij},\theta_{ij1},...,\theta_{ijr_i}) = \frac{N_{ij}!}{N_{ij1}! \cdots N_{ijr_i}!} \theta_{ij1}^{N_{ij1}} \cdots \theta_{ijr_i}^{N_{ijr_i}}$$

and is the distribution of observations in  $r_i$  classes if  $N_{ij}$  observations are selected as outcomes of independent selection from the classes with probabilities  $\theta_{ijk}$ ,  $k=1,...r_i$ 



## Structural Properties

- In order to get reliable results we can focus on features that can be inferred
  - for example, we can define a feature, an indicator variable f with value 1 if and only if the structure of the model contains a path between nodes A and B
  - Looking at a set of models S with a good fit we can approximate the posterior probability of feature f by

$$P(f|D) = \sum_{S} f(S)P(S|D)$$

 With gene regulatory networks, one can look for only the most significant edges based on the scoring



- A Markov chain is defined over Bayesian nets so that it approaches a steady-state distribution as it is being run, and the probabilities of the states (networks) correspond to their posterior probability
- Individual nets are created as states in the chain and after (assumed) convergence, samples  $S_i$  are taken
- Posterior probability of an edge can then be approximated with

$$P(f(S)|D) \approx \frac{1}{n} \sum_{i=1}^{n} f(S_i)$$

• To work out the Monte Carlo Method to generate networks we first have to compute P(D|S)

$$P(D|S) = \int_{\theta} P(D|\theta, S)P(\theta|S)d\theta$$

$$= ...$$

$$= \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

Monte Carlo moves: ADD, REMOVE, REVERSE edge in network

|□▶ ◀∰▶ ◀불▶ ◀불▶ | 불 | 쒸٩♡