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Graphical display of dependence structure between multiple interacting quantities
(expression levels of different genes).

Probabilistic semantics: Fits the stochastic nature of both the biological
processes and noisy experiments. Capable of handling noise and estimating the
confidence in the different features of the network.

Due to lack of data: Extract features that are pronounced in the data rather than
a single model that explains the data.

Random variable Xi = measured expression level of gene i represented by nodes.

Edges = regulatory interactions between genes.
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Define the functional form of the conditional distributions (e.g. multinomial for
discrete variables, linear Gaussian for continuous variables).

Find the best network structure S
Given a network structure, find the best set of parameters for the conditional
distributions (the most probable structure/parameter vector given the data)
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Graphic representation of a joint distribution over a set of random variables
A,B,C ,D,E .

P(A,B,C ,D, E) = P(A) ∗ P(B) ∗ P(C |A) ∗ P(D|A,B) ∗ P(E |D)

A B

C D

E

Example: Nodes represent gene expression
while edges encode the interactions (cf.
inhibition, activation)
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Given a set of random variables X = (X1, ...,Xn), a Bayesian network is defined
as a pair BN = (S, θ), where

S is a directed acyclic graph (DAG), which is a graphical representation of the
conditional independencies between variables in X
θ is the set of parameters for the conditional probability distributions of these
variables.
In a Bayesian network, the probability of a state x = (x1, x2, ..., xn) is factored as

P(x) = P(x1|pa(x1))P(x2|pa(x2)).xn|pa(xn)),

where pa(x) denotes the parents of node x in the graph S
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Consider a microarray (Dij ), whose rows (Di.) correspond to genes and whose columns
(D.j ) correspond to probes (tissue samples, experiments, etc.)

A real value is coming from one spot and tells if
the concentration of a specific mRNA is
higher(+) or lower(-) than the normal value
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Dynamic Bayesian Networks I

A Bayesian network should be a DAG
(Direct Acyclic Graph).

Random variable Xi = measured expression
level of gene i . Arcs = regulatory
interactions between genes.

However, there are lots regulatory networks
having directed cycles.

Solve this by expanding into the time
direction

A

B

A1 A2

B1 B2

Use DBN (Dynamic Bayesian Networks: BN with constraints on parents and children
nodes) for sequential gene expression data
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Dynamic Bayesian Networks II

We are looking for a Bayesian network that is most probable given the data D
(gene expression)

BN∗ = argmaxBN{P(BN|D)}

where

P(BN|D) =
P(D|BN)P(BN)

P(D)

There are many networks. An exhaustive search and scoring approach for the
different models will not work in practice (the number of networks increases
super-exponentially, O(2n

2
) for dynamic Bayesian networks)

Idea: Sample the networks such that we eventually have sampled the most
probable networks
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Monte Carlo I

Recall detailed balance condition for Monte Carlo

P(BNold |D)P(BNold → BNnew |D) = P(BNnew |D)P(BNnew → BNold |D)

Let us look at

P(BN|D) =
P(D|BN)P(BN)

P(D)

Assume P(BN) is uniformly distributed (We could incorporate knowledge)

Choose next BN with probability P(BNnew)

Accept the new BN with the following Metropolis-Hastings accept/rejection
criterion:

P = min
{
1,

P(BNnew|D)P(BNnew → BNold |D)

P(BNold|D)P(BNold → BNnew |D)

}
= min

{
1,

P(D|BNnew)P(BNnew)P(D)

P(D|BNold)P(BNold)P(D)

}
= min

{
1,

P(D|BNnew)P(BNnew)

P(D|BNold)P(BNold)

}
= min

{
1,

P(D|BNnew)

P(D|BNold)

}
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Discrete model I

Even though the amount of mRNA or protein levels, for example, can vary in a
scale that is most conveniently modeled as continuous, we can still model the
system by assuming that it operates with functionally discrete states

activated / not activated (2 states)
under expressed / normal / over expressed (3 states)

Discretization of data values can be used to compromise between the
averaging out of noise
accuracy of the model
complexity/accuracy of the model/parameter learning

Qualitative models can be learned even when the quality of the data is not
sufficient for more accurate model classes

Let Nijk be the number of times we observe variable/node i in state k given
parent node configuration j

Summarize the number of total number of observations for variable i with parent
node configuration j ,

Nij =

ri∑
k=1

Nijk

Since our states are discrete we use a multinomial distribution
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Discrete model II

the ML estimate of multinomial probabilities is obtained by the normalized counts

θ̂ijk =
Nijk

Nij

A convenient prior distribution to choose for the parameters θ is given by the
Dirichlet distribution

(θij1 , ..., θijri ) ∼ Dirichlet(αij1 , ..., αijri )

The Dirichlet distribution has PDF

f (θij1, ...θijri ;αij1, ...αijri ) =
1

B(αij )

ri∏
i=1

θ
αijri

−1
ijri

with θijri ≥ 0,
∑

i θijri = 1 and hyperparameters αijri ≥ 0, αij =
∑

k αijri

The normalization constant, the Beta function, can be expressed using the
gamma function

B(αij ) =

∏ri
k=1 Γ(αijri )

Γ(αij )
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Discrete model III

The convenience arises from the fact that the distribution is conjugate to the
multinomial distribution, i.e., if P(θ) is Dirichlet and P(X |θ) is multinomial, then
P(θ|X ) is Dirichlet as well

The multinomial distribution is given (for Nij =
∑

k Nijk ) by

f (Nij1, ...,Nijri |Nij , θij1, ..., θijri ) =
Nij !

Nij1! · · ·Nijri !
θ
Nij1
ij1 · · · θ

Nijri
ijri

and is the distribution of observations in ri classes if Nij observations are selected
as outcomes of independent selection from the classes with probabilities
θijk , k = 1, ...ri
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Structural Properties I

In order to get reliable results we can focus on features that can be inferred
for example, we can define a feature, an indicator variable f with value 1 if and only
if the structure of the model contains a path between nodes A and B
Looking at a set of models S with a good fit we can approximate the posterior
probability of feature f by

P(f |D) =
∑
S

f (S)P(S|D)

With gene regulatory networks, one can look for only the most significant edges
based on the scoring

A Markov chain is defined over Bayesian nets so that it approaches a steady-state
distribution as it is being run, and the probabilities of the states (networks)
correspond to their posterior probability

Individual nets are created as states in the chain and after (assumed)
convergence, samples Si are taken

Posterior probability of an edge can then be approximated with

P(f (S)|D) ≈
1
n

n∑
i=1

f (Si )
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Structural Properties II

To work out the Monte Carlo Method to generate networks we first have to
compute P(D|S)

P(D|S) =

∫
θ
P(D|θ,S)P(θ|S)dθ

= ...

=
n∏

i=1

qi∏
j=1

Γ(αij )

Γ(αij + Nij )

ri∏
k=1

Γ(αijk + Nijk )

Γ(αijk )

Monte Carlo moves: ADD, REMOVE, REVERSE edge in network
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