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Outline

Graphical display of dependence structure between multiple
interacting quantities (expression levels of different genes).

Probabilistic semantics: Fits the stochastic nature of both the
biological processes and noisy experiments. Capable of handling noise
and estimating the confidence in the different features of the network.

Due to lack of data: Extract features that are pronounced in the data
rather than a single model that explains the data.

Random variable Xi = measured expression level of gene i represented
by nodes.

Edges = regulatory interactions between genes.
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Outline

Define the functional form of the conditional distributions (e.g.
multinomial for discrete variables, linear Gaussian for continuous
variables).

Find the best network structure S
Given a network structure, find the best set of parameters for the
conditional distributions (the most probable structure/parameter vector
given the data)
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Bayesian Networks

Graphic representation of a joint distribution over a set of random
variables A,B,C ,D,E .

P(A,B,C ,D,E ) = P(A) ∗ P(B) ∗ P(C |A) ∗ P(D|A,B) ∗ P(E |D)

A B

C D

E

Example: Nodes represent gene
expression while edges encode the
interactions (cf. inhibition,
activation)
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Bayesian Networks

Given a set of random variables X = (X1, ...,Xn), a Bayesian network
is defined as a pair BN = (S , θ), where

S is a directed acyclic graph (DAG), which is a graphical representation
of the conditional independencies between variables in X
θ is the set of parameters for the conditional probability distributions of
these variables.
In a Bayesian network, the probability of a state x = (x1, x2, ..., xn) is
factored as

P(x) = P(x1|pa(x1))P(x2|pa(x2))...P(xn|pa(xn)),

where pa(x) denotes the parents of node x in the graph S
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Gene Expression Data

Consider a microarray (Dij), whose rows (Di .) correspond to genes and
whose columns (D.j) correspond to probes (tissue samples, experiments,
etc.)

A real value is coming from one spot
and tells if the concentration of a
specific mRNA is higher(+) or
lower(-) than the normal value
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Bayesian Networks for Gene Expression Data Dynamic Bayesian Networks

A Bayesian network should be a
DAG (Direct Acyclic Graph).

Random variable Xi = measured
expression level of gene i . Arcs
= regulatory interactions
between genes.

However, there are lots
regulatory networks having
directed cycles.

Solve this by expanding into the
time direction

A

B

A1 A2

B1 B2

Use DBN (Dynamic Bayesian Networks: BN with constraints on parents
and children nodes) for sequential gene expression data
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Bayesian Networks for Gene Expression Data Dynamic Bayesian Networks

We are looking for a Bayesian network that is most probable given the
data D (gene expression)

BN∗ = argmaxBN{P(BN|D)}

where

P(BN|D) =
P(D|BN)P(BN)

P(D)

There are many networks. An exhaustive search and scoring approach
for the different models will not work in practice (the number of
networks increases super-exponentially, O(2n

2
) for dynamic Bayesian

networks)

Idea: Sample the networks such that we eventually have sampled the
most probable networks
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Bayesian Networks for Gene Expression Data Monte Carlo

Monte Carlo

Recall detailed balance condition for Monte Carlo

P(BNold |D)P(BNold → BNnew |D) = P(BNnew |D)P(BNnew → BNold |D)

Let us look at

P(BN|D) =
P(D|BN)P(BN)

P(D)

Assume P(BN) is uniformly distributed (We could incorporate
knowledge)
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Bayesian Networks for Gene Expression Data Monte Carlo

Choose next BN with probability P(BNnew)

Accept the new BN with the following Metropolis-Hastings
accept/rejection criterion:

P = min

{
1,

P(BNnew|D)P(BNnew → BNold |D)

P(BNold|D)P(BNold → BNnew |D)

}
= min

{
1,

P(D|BNnew)P(BNnew)P(D)

P(D|BNold)P(BNold)P(D)

}
= min

{
1,

P(D|BNnew)P(BNnew)

P(D|BNold)P(BNold)

}
= min

{
1,

P(D|BNnew)

P(D|BNold)

}
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Bayesian Networks for Gene Expression Data Monte Carlo

Discrete model

Even though the amount of mRNA or protein levels, for example, can
vary in a scale that is most conveniently modeled as continuous, we
can still model the system by assuming that it operates with
functionally discrete states

activated / not activated (2 states)
under expressed / normal / over expressed (3 states)

Discretization of data values can be used to compromise between the

averaging out of noise
accuracy of the model
complexity/accuracy of the model/parameter learning

Qualitative models can be learned even when the quality of the data
is not sufficient for more accurate model classes
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Bayesian Networks for Gene Expression Data Monte Carlo

Let Nijk be the number of times we observe variable/node i in state k
given parent node configuration j

Summarize the number of total number of observations for variable i
with parent node configuration j ,

Nij =

ri∑
k=1

Nijk

Since our states are discrete we use a multinomial distribution

the ML estimate of multinomial probabilities is obtained by the
normalized counts

θ̂ijk =
Nijk

Ni j
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Bayesian Networks for Gene Expression Data Monte Carlo

A convenient prior distribution to choose for the parameters θ is given
by the Dirichlet distribution

(θij1, ..., θijri ) ∼ Dirichlet(αij1, ..., αijri )

The Dirichlet distribution has PDF

f (θij1, ...θijri ;αij1, ...αijri ) =
1

B(αij)

ri∏
i=1

θ
αijri

−1

ijri

with θijri ≥ 0,
∑

i θijri = 1 and hyperparameters
αijri ≥ 0, αij =

∑
k αijri

The normalization constant, the Beta function, can be expressed
using the gamma function

B(αij) =

∏ri
k=1 Γ(αijri )

Γ(αij)
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Bayesian Networks for Gene Expression Data Monte Carlo

The convenience arises from the fact that the distribution is
conjugate to the multinomial distribution, i.e., if P(θ) is Dirichlet and
P(X |θ) is multinomial, then P(θ|X ) is Dirichlet as well

The multinomial distribution is given (for Nij =
∑

k Nijk) by

f (Nij1, ...,Nijri |Nij , θij1, ..., θijri ) =
Nij !

Nij1! · · ·Nijri !
θ
Nij1

ij1 · · · θ
Nijri
ijri

and is the distribution of observations in ri classes if Nij observations
are selected as outcomes of independent selection from the classes
with probabilities θijk , k = 1, ...ri
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Bayesian Networks for Gene Expression Data Monte Carlo

Structural Properties

In order to get reliable results we can focus on features that can be
inferred

for example, we can define a feature, an indicator variable f with value
1 if and only if the structure of the model contains a path between
nodes A and B
Looking at a set of models S with a good fit we can approximate the
posterior probability of feature f by

P(f |D) =
∑
S

f (S)P(S |D)

With gene regulatory networks, one can look for only the most
significant edges based on the scoring

Dieter W. Heermann (Monte Carlo Methods)The Monte Carlo Method: Bayesian Networks 2015 16 / 1



Bayesian Networks for Gene Expression Data Monte Carlo

A Markov chain is defined over Bayesian nets so that it approaches a
steady-state distribution as it is being run, and the probabilities of the
states (networks) correspond to their posterior probability

Individual nets are created as states in the chain and after (assumed)
convergence, samples Si are taken

Posterior probability of an edge can then be approximated with

P(f (S)|D) ≈ 1

n

n∑
i=1

f (Si )
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Bayesian Networks for Gene Expression Data Monte Carlo

To work out the Monte Carlo Method to generate networks we first
have to compute P(D|S)

P(D|S) =

∫
θ
P(D|θ,S)P(θ|S)dθ

= ...

=
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk)

Γ(αijk)

Monte Carlo moves: ADD, REMOVE, REVERSE edge in network
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