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Rejection-Free Monte Carlo I

So far, we have been using the rejection Monte Carlo algorithms. To remind us, the
algorithms proceeds from state x to possible state x ′ as outlined in Algorithm 1.

Algorithm 1 Accept/Reject Monte Carlo Algorithm

1: Choose initial state x
2: for n-of-samples do
3: Select a new state x ′

4: With probability p accept, i.e. set x = x ′

5: With probability (1− p), x ′ is rejected
6: end for

The probability will depend on some change induced by the state change

Construct algorithm that does not involve accept/reject, i.e. always accept

Thus, the methods will be (synchonously or asynchronously) event-driven [1] (see
Algorithm 2)
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Rejection-Free Monte Carlo II

Algorithm 2 Event-Driven Algorithm

1: for n-of-samples do
2: Identify all possible events
3: Identify the event with the smallest time stamp ∆t
4: Set time t = t + ∆t
5: end for

Methods that rely on rates between states thus the sequence that ultimately will
be generated evolves in time (see Fig. 1).

However, not as in the previous chapters systolically, driven by a constant
increment in time, but by leaps of various length in time.

This also opens up the possibility to make rigorous the notion of time in Monte
Carlo methods.
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Rejection-Free Monte Carlo III
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Figure: The lhs panel shows the typical systolic propagation of time for example in the
Metropolis Monte Carlo. Sometimes new state proposals are rejected (circles) and the previous
state is the new state. The rhs panel depicts the leaps in time that are made to achieve a
rejection free algorithm.
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Rejection-Free Monte Carlo IV

Consider a state space Ω and a sequence {xtk ∈ Ω} of states from the state
space. Often we simply write i or j etc. to label the states.

Here we assume t0 < t1 < · · · < tk < · · · .
So far we have had ∆t = tk − tk−1 constant, i.e. the system was moved forward
in time by a constant stride.

Furthermore, for two states (xk−1, xk ) we have the Markov property so that the
sequence {xtk ∈ Ω} is a Markov chain.

Let us now look at continuous-time Markov chains {xt ∈ Ω|t ∈ R, t ≥ 0}. For
the chain to be a continuous-time Markov chain the following condition needs to
apply
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Rejection-Free Monte Carlo V

P(x(t + τ) = j |x(τ) = i , x(u) = k, 0 ≤ u ≤ τ) = P(x(t + τ) = j |x(τ) = i) . (1)

Define

pij (t) := P(x(t + τ) = j |x(τ) = i) = P(x(t) = j |x(0) = i) (2)

and for any state i we have (for N possible states)

N∑
j=1

pij (t) = 1 . (3)

Let P(0) = limt↘0 P(t) = I be the initial condition. Then the matrix R defined by

lim
h↘0

P(h)− I

h
= P′(0) = R (4)

is the infinitesimal generator of the continuous-time Markov process with rate rij∑
j=1,j 6=i

rij = −rii (5)

and
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Rejection-Free Monte Carlo VI

rij = lim
h↘0

pij (h)

h
≥ 0 and rii ≤ 0 . (6)

Define ri := −rii > 0 to be the rate corresponding to state i . Given R, then for all
t ≥ 0

P′(t) = RP(t) . (7)

and

P(t) = Re−Rt (8)

as the first-passage-time distribution and further

pij = rije
−rij t . (9)

Since we are talking about first-passage only, only one of the possibilities can happen.
Thus, rather than focusing on the transition probabilities (c.f. Fig. 2) as we have in
the previous chapters, we can focus on the rates between states opening up to models
where there is no Hamiltonian. Even more so, the rates themselves may depend on
time. If they do not then the Markov process is stationary.
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Rejection-Free Monte Carlo VII
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Figure: The figure shows the general situation where the circles denote states in state space
that belong to the same state i .
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Rejection-Free Monte Carlo VIII

Let ni denote the population of state i .

Given that we are dealing with a thermal system then ni must be proportional to
exp{−F (i)/kBT}.
In equilibrium if we have detailed balance then

ni rij = nj rji . (10)

Thus, what is needed for a model is a state space Ω and a set of rates R, i.e.
(Ω,R).

This can for example be a set of chemical reactions with the corresponding rates.

We envisage that at any given time for a state i not all states j are accessible.

Thus it is convenient to relabel the currently accessible states with a new label.

We arrive at a list of N possible events and a list with corresponding rates

{En ∈ Ω} with n = 1, . . . ,N (11)

{rn} with n = 1, . . . ,N (12)
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Rejection-Free Monte Carlo IX

From a computational point of view, it is immediately apparent that what is
needed is a well performing bookkeeping algorithm for the events and the rates as
they may change after an event has been chosen

Let us consider this for the Ising model.

It was pointed out by Bortz, Kalos and Lebowitz [2] that the probability of
accepting new configurations in the Ising model is very low in same cases.

Consider the case when the temperature is low.

Then two spins will have likely the same orientation and thus a reversal has very
low probability.

Thus, out of the N attempts only a very low fraction will result in changes.
Suppose only attempts are made that are successful.

For this the rates rij from state i to j need to be known a priori.
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Rejection-Free Monte Carlo X

In the Ising case we know transition rates among states a priori. For the
two-dimensional Ising model

H = −J
∑
<i,j>

SiSj Si = ±1 (13)

with its spin-up spin-down symmetry we have the situations as shown in Table 1.

Spin ↑ (+1) ↓ (−1)
Neighbours 4 3 2 1 0 0 1 2 3 4
Class 1 2 3 4 5 6 7 8 9 10

Table: Classes for the kinetic Monte Carlo (n-fold way) algorithm proposed by Bortz et.
al. [2]. Corresponding to each class i there is a probability pi .

Altogether we have ten possible states, depending on the number of neighbors
the central spin is surround by.

Each of these states we assign a class.

Assume further that the transition probability between states is given by

p =
x

1 + x
with x = exp{−∆H/kBT} , (14)

then all possible transitions ri, are given.
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Rejection-Free Monte Carlo XI

One possibility is to use Eq. 9 to draw time increments for the event to happen.

This algorithm is known as the first-reaction method [3].

For this we generate a random number ρ ∈ (0, 1) and compute

tij = −r−1
ij ln(ρ) . (15)

Thus, for every state change we know the probability and the first passage times.

What remains to do is to identify the state change i → j . For this we select the
reaction coordinate that comes first in time

∆t = min
ij

tij . (16)

Then this state change is performed and time advances (see Algorithm 3)

t = t + ∆t . (17)
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Rejection-Free Monte Carlo XII

.

Algorithm 3 First Reaction Monte Carlo Algorithm

1: Initial time t = 0
2: Choose initial state i
3: for n-of-samples do
4: Set up list of transition rates rij (size N)
5: Generate N random numbers ρj from a uniform distribution on (0, 1]

6: tij = r−1
ij ln(ρ−1

j )

7: ∆t = minij tij
8: Carry out event i → j that is minimum
9: Update t = t + ∆t

10: i ← j
11: end for
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Rejection-Free Monte Carlo XIII

Hence, we only perform those state changes that actually occur.

This is in contrast to the procedure that we have developed so far.

Note that this algorithm uses O(N) to build the list of transition rates, O(N) for
the number of random numbers and O(N) to determine the minimum time.

The obvious difference to the Metropolis Monte Carlo algorithm is that time does
not advance in fixed increments but rather leaps in non-constant strides.

It must further be pointed out that the transition probabilities change at every
step.

Indeed, one of the key features is that the distribution of rates is coupled to the
state space [4] and can change.

For the Ising case there is no such problem.

This can be seen when we consider the two-dimensional case shown in Diagram 3.

↑ ↑ ↓
↑ ↓ ↑
↑ ↑ ↑

This translates into the class scheme from Table 1.

2 3 10
2 4 3
1 2 2
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Rejection-Free Monte Carlo XIV

A spin flip can change the transition probability and with it the class.

The starting point is a choice of a state the system is started in.

This determines the possible states that the system can transition into and the
corresponding rates rij .

The next step is to compute the sum over all the possible rates from i to j , i.e.
all possible reaction paths.

The next step then is to pick one of the possible reaction paths with equal
probability followed by advancing the time as shown in Algorithm 4.
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Rejection-Free Monte Carlo XV

.

Algorithm 4 Kinetic Monte Carlo Algorithm

1: Initial time t = 0
2: Choose initial state i at random
3: for n-of-samples do
4: Set up list of transition rates rij (size N)
5: Compute Ri,j =

∑i
k=1 rik for j = 1, ...,N

6: Compute Ri = Ri,N

7: Generate ρ from a uniform distribution on (0, 1]
8: Choose i such that Ri,j−1 < ρRi ≤ Rij

9: Carry out event j
10: Update i → j
11: Generate ρ from a uniform distribution on (0, 1]
12: ∆t = R−1

i ln(ρ−1)
13: t = t + ∆t
14: end for
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Rejection-Free Monte Carlo XVI

The beauty of the kinetic Monte Carlo Method is that it easily generalizes to
arbitrary states and reactions.
This is why has been used for many condensed matter systems [5–8] with certain
refinements [9–13] and coupled to molecular dynamics [14].
Further developments are the coarse-grained kinetic Monte Carlo [15? ] and the
first-passage kinetic Monte Carlo algorithm [16].
Let us return to the initial example of the Ising Model.
Let ni be the number of spins in class i (see Table 1), then we need to choose the
relative weights nipi according to Algorithm 4 and once a class has been chosen a
spin in that class is chosen with probability 1/ni .
Fichthorn and Weinberg [17] showed that under the condition of detailed balance
and the effective independence of the events, the Algorithm 4 yields a Poisson
process and that static and dynamic properties are consistent with the
Hamiltonian dynamics [18].
However, detailed balance is not necessary!
As we will see later, the kinetic Monte Carlo method is used for non-equilibrium
situation and where detailed balance is not fulfilled but global balance is achieved.
Note that number of operation, i.e. the complexity is O(N). Makysm [19]
showed that using a binning method and recursive search trees, the complexity
can be brought down to O(log2 N) [10].
For completeness, even though we are in the chapter on rejection-free Monte
Carlo, here is a rejection algorithm for the model pair (Ω,Q)
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Rejection-Free Monte Carlo XVII

.

Algorithm 5 Rejection Kinetic Monte Carlo Algorithm

1: for n-of-samples do
2: Set up list of transition rates rn (size N)
3: Compute an estimator for the sum of rates r̄
4: while state not selected do
5: Generate ρ from a uniform distribution on [0,N)
6: Compute n = (Int)(ρ) + 1
7: Select n if n − ρ < rn/r̄
8: end while
9: n is new state

10: end for
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Rejection-Free Monte Carlo XVIII
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Figure: For the simplest parallel kinetic Monte Carlo algorithm, we assume that the topology
for the processors is that of a lattice (for simplicity here a simple square lattice with the
processors (P) at the nodes of the lattice) with possible periodic boundary condition (dashed
lines). The solid lines represent bi-directional communiation channels (lhs). The rhs panel
shows the possibility that a processor has been assigned more than site, say for the 2-D Ising
model, L/l lattice sites. The gray shaded area is the part where no communication between
the processors is needed for a decision to flip a spin.
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Rejection-Free Monte Carlo XIX

For the Ising model, Lubachevsky [20] has succeeded to parallelize the Monte
Carlo algorithm based on the ideas put forward in the more general context by
Chandy and J. Misra [21, 22].

He formulated the algorithm as a distributed discrete-event system.

Various methods have been designed specifically with lattice models at
focus [23–25].

Also the scaling properties of these type of algorithms have been
investigated [26, 27] associating the development of the individual time
increments at the individual processors with time increments corresponding to
depositions and thus identifying this with surface growth (Kardar-Parisi-Zhang
equation [28]).

The parallelization of the τ -leap has been done by Xu et.al. [29] and for the
presence of long-range interactions see [30].

Also much effort has gone into parallelization of the Gillespie ansatz, for example,
Komarov [31].

The key problem in the parallelization is to avoid event time incompatibilities
with communications.

The solution that Lubachevsky [20] has put forward is the strict synchronization
(c.f. Figure 3 and Algorithm 6).
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Rejection-Free Monte Carlo XX

The problem is solved in this algorithm using a global synchronization at the
slight expense of efficiency.

The algorithm presented here is aiming at the above outlined Ising situation.

We assume two functions nextState(i , ti , neighbours(i)) which calls upon the
neighbor processors for the corresponding states sj and nextTime(ti ) delivers the
next time.

22 / 45



Rejection-Free Monte Carlo XXI

.

Algorithm 6 Lubachevsky Parallel Monte Carlo Algorithm

1: s′ = si
2: t′ = ti
3: for n-of-samples do
4: if ti ≤ minj∈neighbours(i) tij then
5: s′ = nextState(i , ti , neighbours(i))
6: t′ = nextTime(ti )
7: Global synchronize
8: t = t′

9: s′ = s
10: Global synchronize
11: else
12: Global synchronize
13: Global synchronize
14: end if
15: end for
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Rejection-Free Monte Carlo XXII

Assume that in the Ising case the lattice is much larger that the number of
processor and that there are L/l lattice sites per processors (i.e. L× L lattice with
l × l blocks).

There are now interior and boundary sites to be handled by the Algorithm 6.
Korniss et. al. [32] have argued that the synchronization steps in the algorithm
are not necessary.

If the same random number generator runs on each of the processors with the
same initial seed, they argue that the probability of equal-time nearest-neighbor
updates is of measure zero.

Thus they suggest to treat the interior spins (gray shaded region in Figure 3) like
regular spins and use

p = min{1, exp(−∆H/kT )} (18)

with ∆t = − ln(ρ) (ρ the random number) advancement in time.

For the boundary spins the criterion in Algorithm 6 is applied.

To ensure freedom of a deadlock a barrier is used for the boundary spins with a
wait until the local time t becomes less than or equal to the same quantity for
the neighbours.

24 / 45



Rejection-Free Monte Carlo XXIII

For the kinetic Monte Carlo algorithm for the Ising model Lubachevsky [20]
introduced an additional class Nb on top of the 10 classes for the boundary spins.
Assume as above that the linear system size is L and that there are 4l boundary
spins per processor.

Then Nb = 4(l − 1).

The basic idea is to use the original Monte Carlo, for example Metropolis Monte
Carlo, for the boundary spins and for the interior spins the kinetic Monte Carlo.

Thus the algorithms proceeds as outlined in Algorithm 7.

For this we augment the 10 classes with the additional class Nb.
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Rejection-Free Monte Carlo XXIV

.

Algorithm 7 Lubachevsky Parallel Kinetic Monte Carlo Algorithm

1: Initial time t = 0
2: for n-of-samples do
3: Set up list of transition rates ri = nipi plus Nb

4: Compute Rk =
∑i

i=1 ri
5: Generate ρ from a uniform distribution on (0, 1]
6: Choose i such that Ri < ρRi ≤ Ri

7: Choose a spin with equal probability within the class i
8: if spin is within the interior then
9: Flip the spin

10: else
11: Wait until the local simulated time ≤ neighbour processor
12: Apply Metropolis Monte Carlo to the spin
13: end if
14: Update time
15: end for
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Rejection-Free Monte Carlo XXV

A slightly different approach has been taken by Martinez [33] by a synchronous
time decomposition of the master equation (synchronous parallel kMC method
(spkMC)).

The basic idea is to create so called null events advancing the internal clock of
each processor. This is done without altering the stochastic trajectory of the
system.

Further developments have been done specifically for the reaction-diffusion
problems (see [34] and references therein).

Due to the success of other parallelization algorithms on GPUs, an algorithm was
proposed by Jimenez and Ortiz [35], Klingbeil [36] and Agostino et. al. [37].

Also discrete-event approaches have been developed [38] specifically for the
Gillespie ansatz.
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Lifting I

As the name of this section suggests we augment the state space Ω with one or
more additional variables.

Let us first examine this idea for the Ising model in the case of conserved energy.

Assume that we add the extra variable or degree of freedom to the
Hamiltonian [39] (13)

H′ = e −
∑
<i,j>

SiSj Si = ±1 (19)

with Ω′ = N× Ω.

The extra variable e allows to lift the system out of the otherwise constraint
hyperspace of constant energy.

Set e to an appropriate value according to the initial energy.

We can construct a Markov chain by choosing a spin at site ν at random.

We change the spin direction at site ν to obtain ∆H for the energy change in the
Ising Hamiltonian.

If we loose energy, then we transfer the energy to e and accept the change.

If we would gain energy, then we accept the change under the condition that e
has enough energy.
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Lifting II

Let us now look at the more general case. Chen et. al. and others [40–44]
constructed a non-reversible Markov chain Monte Carlo Method (Lifted
Metropolis-Hastings) as for example also in the (Hamiltonian) Hybrid Monte [45]
(see also for the Bouncy Particle Sampler method [46]).

The effect of this lifting is a reduced mixing time of the Markov chain (at best
reduced by the square root of the original time).

So far we almost always used the detailed balance condition for the transition
probability W and the invariant distribution p which we want to obtain from a
Markov chain

p(x)W (x , x ′) = p(x ′)W (x ′, x) for all x , x ′ ∈ Ω . (20)

This is not a necessary but sufficient a condition for the transition probability.

One of possible solutions to Eq. 20 is the Metropolis Hastings transition
probability

W (x , x ′) = q(x |x ′)min
{
1,

p(x ′)q(x |x ′)
q(x ′|x)p(x)

}
(21)

with the propositional probability q. The Hybrid Monte Carlo Method [45] has
made use of this propositional probability.
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Lifting III

Consider the global balance condition for the transition probability W [47]∫
p(x)W (x , x ′)dx =

∫
p(x ′)W (x ′, x)dx ′ (22)

which we need to really to fulfill and the constraint

W (x , x ′)W (x ′, x) = 0 for all x , x ′ ∈ Ω . (23)

W ’s that fulfill criterion 22 and criterion 23 are said to check a maximal global
balance condition [48, 49].

Following the idea of adding additional degrees of freedom, we augment the
system by an auxiliary variable e. Thus for the distribution p this results in

p(x , e) = p(x)p(e) (24)

and for the above example (19) this would be

p(e) ∝ exp{−βe} . (25)

and fix the propositional probability as

q(x ′, e|x , e) =

{
1, if x ′ = x + e∆s

0, otherwise
(26)
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Lifting IV

where the statement x ′ = x + e∆s is meant to express that x ′ and x should not
differ too much.

Thus we updated the state in the direction given by e. This is continued until
rejection occurs.

Then we choose a new e′ and continue with (x ′, e′) which lifts the rejection into
the lifting space rendering the entire method rejection-free.

The probability for the choice of e′ is based on the condition 22.
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Event-Chain Monte Carlo I

We will extend the rejection-free Monte Carlo simulation methods by considering
irreversible Markov chains drawing on idea by Peters [50] and the concept of
lifting [41].

These methods have been successfully developed for the problem of melting in
two dimensions [51–54].

Extensions have been derived for discrete-variable models [55], classical
continuous spin models [56, 57] and further generalized to rejection-free
global-balance algorithms [58] and the forward event-chain Monte Carlo
algorithm [47].

Here we follow [47] in the exposition of the algorithm.

The goal is to use the ideas of lifting developed in the previous section to develop
a rejection-free Monte Carlo algorithm.

We use the extra variable e to suggest a new state.

Rather than using an except/reject on this, we choose a time for the new event
to happen and sample all the state in a chain along the way, until we have
reached the transition time. We then choose a new e value and continue.

To sample the time ∆s we go about as in (9) and (15).

For ease presentation we follow the mechanistic language and assume an energy
function E(x) and consider e a velocity (see also Hybrid Monte Carlo [45]).
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Event-Chain Monte Carlo II

Thus in Eq. 26 we are looking for displacements in space controlled by the time
∆s and the velocity e.

In Eq (26) we have made a choice for the propositional probability.

With the notation [a]+ = max{0, a} and Metropolis choice of transition
probability (21) we have

W (x , x ′) = min{1, exp{−∆E(x)e}} = exp{−[∆E(x)e]+} . (27)

To determine the transition time we add up all the moves until we have reached
the event time

∆E∗(∆s) =

∫ ∆s

0
[∇E(x + se)e]+ds (28)

and find the time ∆s by solving the equation

∆E∗(∆s) = log(ρ) (29)

where ρ ∈ (0, 1] is a uniform random number. It rests to choose the transition
probability for e. Here Michel and Senecal [47] suggest

p(e′ → e) = δ(e′ + e) (30)
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Event-Chain Monte Carlo III

In Algorithm 8 the full algorithm is exposed (for parallelization for example for
dense hard sphere and polymer systems see [59]).
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Event-Chain Monte Carlo IV

Algorithm 8 Event Chain Monte Carlo Algorithm [47]

1: Initial state x ′ = x0
2: for n-of-samples do
3: Set current event chain length lc = l
4: Set random direction e
5: while True do
6: Set initial sample x = x ′

7: Compute ∆E∗ = − log(ρ), ρ from a uniform distribution on (0, 1]
8: Compute ∆s
9: if lc < ∆s then

10: Compute x ′ = x + lce
11: Set sample xk = x ′

12: Break
13: else
14: Compute x ′ = x + ∆se
15: Update chain length lc = lc −∆s
16: Update direction −e
17: end if
18: end while
19: end for
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