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Histogram Methods I

The Monte-Carlo Methods very elegantly side steps the need to compute the
partition function.

Remember, that we only need the ratios of probabilities and hence the
normalization, which involves the partition function, cancels out.

There are, however, situations where we would like to compute for example the
free-energy or a free-energy difference directly.

One could of course do a thermodynamic integration using the appropriate
variables that one has previously computed using the Monte-Carlo method.

We can also make use of all the samples that we have generated during the
course of a simulation and analyze and use them in more detail.
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Histogram Methods II

We first look at how we can compute the difference in free-energy [1, 2].

Let H be the Hamiltonian of our system and let T1 and T2 be two temperatures.

We would like to compute the free-energy difference

∆F = F1 − F2 = −kT ln
Z1

Z2
(1)

For the ratio between the two partition functions we obtain

Z1

Z2
=

1
Z2

∫
e−H/kT1dx (2)

=
1
Z2

∫
e−H/kT2eH/kT2−H/kT1dx (3)

= < eH/kT2−H/kT1 >2 (4)

Thus, we can compute the free-energy difference by computing the expectation
value of a new observable O = eH/kT2−H/kT1 with respect to the Hamiltonian at
temperature T2.
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Histogram Methods III

There is a catch however. Consider the probability to generate a configuration
with energy difference E using H at temperature T2

p(E) =
1
Z2

∫
e−H/kT2δ(H/kT1 −H/kT2 − E)dx (5)

Then the expectation value is given by

< eH/kT2−H/kT1 >2 =

∫
p(E)e−E/kT2dE (6)

This highlights the problem that we have with computing the free-energy by
evaluation a new observable with respect to some Hamiltonian.

For large systems the function p(E) is very sharply peaked around some value
< E >. In general the average is not small.

The resulting function from the product of p(E) with e−E/kT2 is again a peaked
function but with a shifted average value.

The success of the above approach thus hinges on the closeness of the two
average values and the overlap between the peaked functions.

Remember the Monte-Carlo method predominately samples the main
contributions, i.e. close to the average value if the distribution is sharply peaked.
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Histogram Methods IV

If the resulting function of the product is shifted too much to small E values then
the sampling of the overlap region is limited and we get a poor estimate for the
free-energy difference.

We can conclude that we would like to have not so sharply peaked distributions
and that the difference that we want to compute should not be too large.

Now we know how to broaden the distribution: We need to simulate small
systems!
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Histogram Methods V

The above method also shows the direction that we may want to go in using
more of the data that we generate during simulation runs.

The above method suggests that it is possible to extrapolate to values of an
observable other than we have computed as long as there is a sufficient overlap
between the distributions of the observable.

This idea has been put forward many times with varying success [3–6, 6–10].

Let K be a dimensionless parameter (for the Ising model that could be
K = J/kT ). Further we assume that we can write

βH = KS (7)

where S is an Operator (if the Hamiltonian represents the Ising model that S
would be

∑
<i,j> si sj ).

While we proceed computing new states using the Monte-Carlo method or the
Molecular Dynamics method, we keep on generating values for the observable S.

For each of the generated values we keep a record in a histogram reflecting the
distribution of the observable.

Let H(S ,K0,N) be the histogram that we have computed using the dimensionless
value K0. N is the number of configurations that we assembled in the histogram.
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Histogram Methods VI

Then we find for the distribution of S at K , applying the same idea as developed
above

PK (S) =
H(S ,K0,N)e(K−K0)S∑
{S} H(S ,K0,N)eK−K0S

(8)

for the probability to find a value S under the constraint K . We can thus
generate an estimate for an observable A that depends on S and K using

< A(S) >K=
∑
{S}

A(S)PK (S) . (9)
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