Monte Carlo Methods
 Lecture 18: Monte Carlo Techniques in Artificial Intelligence

Dieter W. Heermann
January 23, 2021
Heidelberg University

Table of Contents

- Forward algorithm
- Viterbi Algorithm
- n-gram Models
- Forward-Backward Algorithm

1. Introduction
2. Markov Decision Process
3. Deep Learning

- Neural Networks
- Backpropagation
- Classification

■ Hidden Markov Models

- Reinforcement Learning
- Monte-Carlo Policy Evaluation
- Advantage Function
- Q-Learning
- Actor-Critic policy gradient algorithm
- ϵ Greedy Strategy
- Value Function Fitting
- Continuous State and Action Space

4. Genetic Algorithms
5. Excercises
6. Bibliography
7. Index

Introduction

Introduction I

Neural network application to gene finding. Image taken from [1].

Cell imaging analysis with neural networks. Image taken from [2].

Introduction II

Fig. 2 | The folding process illustrated for CASP13 target T0986【ASP target $T 0986 \mathrm{~s} 2 \mathrm{~L}=155, \mathrm{PDB}: 6 \mathrm{~N} 9 \mathrm{~V}$, a, Steps of structure prediction, The neural network predicts the entitex L distogram based on MSA features accumulating separate predictions for 64×64-residue regions.c, One iteration of gradient descent (1,200 steps) is shown, with the TM score and root mean well-packed chaind, The final first submission overlaid on the native structure square deviation (r.m.s.d.) plotted against step number with five snapshots of in grey).e, The average (across the test set; 377) TM score of the lowestthe structure. The secondary structure (from S\$) is also shown (helix in blue, potential structure against the number of repeats of gradient descent per strand in red) along with the native secondary structure (Nat.), the secondary target (log scale).

Figure 1: Image taken from: Improved protein structure prediction using potentials from deep learning Nature 2020 [3].

Introduction III

(Machine) learning can be roughly categorized into supervised and unsupervised. Typical techniques include:

- supervised methods:
- Artificial Neural Network,
- Support Vector Machines and linear classifiers
- Bayesian Statistics,
- k-Nearest Neighbors,
- Hidden Markov Model
- Decision Trees
- un-supervised methods
- Autoencoders,
- Expectation Maximization,
- Self-Organizing Maps,
- k-Means
- Fuzzy clustering
- Density-based clustering.

Methods developed and applications of machine learning in biophysical problems [1] range from finding genes, as featured in the introduction to the analysis of images such as computer tomography spanning the entire variety of bio-biological problems.

Markov Decision Process

Introduction I

Figure 2: Markov decision process. Image taken from:
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690.

Introduction II

Let S be a state space (a countable non-empty set), A be the action space (countable non-empty set of actions) and O the observation space. Let P_{0} be a transition probability kernel that assigns to $(S=s, A=a) \in S \times A$ a probability measure over $S \times \mathbb{R}: P_{0}(\cdot \mid s, a)$.
A countable Markov Decision Process (MDP) is defined as a triple $M=\left(S, A, P_{0}\right)$. We further define a reward function

$$
\begin{equation*}
R(s, a)=\mathbb{E}[R \mid S=s, A=a]=\int_{\mathbb{R}} \sum_{s^{\prime} \in S} R \cdot P_{0}\left(s^{\prime}, R \mid s, a\right) d R . \tag{1}
\end{equation*}
$$

Furthermore let

$$
\begin{equation*}
R\left(s, a, s^{\prime}\right)=\mathbb{E}\left[R \mid S_{t}=s, A=a, S_{t+1}=s^{\prime}\right]=\int_{\mathbb{R}} R \cdot P_{0}\left(s^{\prime}, R \mid s, a\right) d R \tag{2}
\end{equation*}
$$

A Markov Reward Process (MRP) is a Markov process with a reward function. Hence a tuple $(S, P, R, \gamma) . \gamma$ is a discount factor, where $\gamma \in[0,1]$.

Introduction III

Figure 3: Markov decision process, Figure taken from:
https://medium.com/@jonathan-hui/rl-policy-gradients-explained-9b13b688b146.

From the definition it is clear that for a sequence $S_{1}, A_{1} \ldots, S_{t-1}, A_{t-1}, S_{t}, A_{t}, S_{t+1}, A_{t+1}$ we have

$$
\begin{equation*}
\mathbb{P}\left[S_{t+1}, R_{t+1} \mid S_{t} ; A_{t}\right]=\mathbb{P}\left[S_{t+1}, R_{t+1} \mid S_{1}, A_{1} \ldots, S_{t-1}, A_{t-1}, S_{t} ; A_{t}\right] \tag{3}
\end{equation*}
$$

Thus the sequence is Markovian
At each step t an agent:

Introduction IV

- Receives observation o_{t}
- Receives (immediate) scalar reward R_{t}
- Executes action at a_{t}

The environment:

- Receives action a_{t}
- Emits observation O_{t+1}
- Emits scalar reward R_{t+1}

If $s_{t}=o_{t}$ the environment is fully observable. Let G_{t} be the total discounted rewards from time step t

$$
\begin{equation*}
G_{t}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \tag{4}
\end{equation*}
$$

Deep Learning

Deep Learning I

Recall that the gradient descent method computes the gradient of the cost function J w.r.t. to a parameter θ

$$
\begin{equation*}
\theta=\theta-\alpha \cdot \nabla_{\theta} J(\theta) . \tag{5}
\end{equation*}
$$

with the rate α. Choosing a proper learning rate can be difficult. Usually a learning rate schedule is used where α progressively decreases with the number of iterations. The challenge is that mostly the function that we want to minimize is highly non-convex so that there is a high probability to get trapped in numerous suboptimal local minima.

Stochastic gradient descent (SGD) performs a parameter update for each training example $x^{(i)}$ and label $y^{(i)}$

$$
\begin{equation*}
\theta=\theta-\alpha \cdot \nabla_{\theta} J\left(\theta ; x^{(i)} ; y^{(i)}\right) . \tag{6}
\end{equation*}
$$

SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily.

Deep Learning II

```
Algorithm 1 Stochastic gradient descent (SGD)
    for number of epochs do
        randomly shuffle data \((x, y)\)
        for number of data do
            \(\theta=\theta-\alpha \cdot \nabla_{\theta} J\left(\theta ; x^{(i)} ; y^{(i)}\right)\)
        end for
    end for
```

Mini-batch gradient descent: update for every mini-batch of n training examples

$$
\begin{equation*}
\theta=\theta-\alpha \cdot \nabla_{\theta} J\left(\theta ; x^{(i: i+n)} ; y^{(i: i+n)}\right) . \tag{7}
\end{equation*}
$$

Deep Learning III

```
Algorithm 2 Mini-batch gradient descent
    for number of epochs do
        randomly shuffle data ( \(x, y\) )
        for batch in take out a batch from data of size \(m\) do
            \(\theta=\theta-\alpha \cdot \nabla_{\theta} J\left(\theta ; x^{(i: i+n)} ; y^{(i: i+n)}\right)\)
        end for
    end for
```

Gradient descent optimization algorithms
SGD with momentum [4]. Let $\gamma<1$ be the resistance, then

$$
\begin{align*}
v_{t} & =\gamma v_{t-1}+\alpha \nabla_{\theta} J\left(\theta-\gamma v_{t-1}\right) \tag{8}\\
\theta & =\theta-v_{t} .
\end{align*}
$$

The Adaptive Moment Estimation (Adam) [5] is often used in packages like
Tensorflow [6] for the gradient descent:

Deep Learning IV

$$
\begin{align*}
m_{t} & =\beta_{1} m_{t-1}+\left(1-\beta_{1}\right) g_{t} \\
v_{t} & =\beta_{2} v_{t-1}+\left(1-\beta_{2}\right) g_{t}^{2} \tag{9}
\end{align*}
$$

Adam stores an exponentially decaying average of past squared gradients v_{t} and keeps an exponentially decaying average of past gradients m_{t}. They are estimates of the first moment and the second moment of the gradients respectively producing a bias ($\beta_{1} \approx 1$ and $\beta_{2} \approx 1$). This being opposed by

$$
\begin{align*}
\hat{m}_{t} & =\frac{m_{t}}{1-\beta_{1}^{t}} \tag{10}\\
\hat{v}_{t} & =\frac{v_{t}}{1-\beta_{2}^{t}}
\end{align*}
$$

leading to the actual gradient descent

$$
\begin{equation*}
\theta_{t+1}=\theta_{t}-\frac{\eta}{\sqrt{\hat{v}_{t}}+\epsilon} \hat{m}_{t} . \tag{11}
\end{equation*}
$$

Neural Networks: Introduction I

The general goal is to create artificial neural networks (graphs) (ANN) that imitate to some extend the capabilities of the human brain:

- learning
- generalization
- adaptivity
- fault tolerance
- ...

We want this for example for

- pattern classification
- function approximation
- ...

Neural Networks: Introduction II

Pioneering work was done by McCulloch and Pitts with the Perceptron [7, 8]. This was extended by Minsky and Papert [9].

McCulloch and Pitts proposed a binary threshold model as a computational model for an artificial neuron. Let x_{1}, \ldots, x_{n} be the input values and $y=0,1$ be the output. The perceptron is defined by

$$
y=\left\{\begin{array}{ll}
0, & \sum_{i} x_{i} w_{i} \leq b \tag{12}\\
1, & \sum_{i} x_{i} w_{i}>b
\end{array} .\right.
$$

where w_{1}, \ldots, w_{n} are the synaptical weights that Rosenblat [8] introduced (see Figure 4). This can be reformulated as

$$
\begin{equation*}
y=\Theta\left(\sum_{j=1}^{n} w_{j} x_{j}-b\right) \tag{13}
\end{equation*}
$$

This generates an output of 1 if the sum is above a certain threshold. Sometimes we include b in the sum and set $w_{0}=-b$ and x_{0} to a constant input $x_{0}=1$.

Neural Networks: Introduction III

xn , wn

Figure 4: Perceptron.

In this setting

- positive weights correspond to excitatory synapses

■ negative weights correspond to inhibitory synapses.

Clearly one can also use other activation function like

- piecewise linear
- sigmoid neuron

Neural Networks: Introduction IV

- gaussian.

Most often used is the sigmoid function (here the logistic function)

$$
\begin{equation*}
g(x)=\frac{1}{1+e^{-\beta x}} . \tag{14}
\end{equation*}
$$

The above constructed node is then the basic unit in a network (graph) of nodes.
Thus the ANN's are weighted directed graphs where

$$
\begin{align*}
\text { neuron } & \cong \text { node } \tag{15}\\
\text { connection between neuron } & \cong \text { directed edge with weights } \tag{16}
\end{align*}
$$

Example: XOR

Neural Networks: Introduction V

Figure 5: Perceptron XOR.

Connectionist models for gene regulation in the form of recurrent Hopfield [10] networks have been proposed by Mjolsness and others [11-13] to describe regulatory networks as directed graphs or matrices of interactions without restrictions on connectivity. These continuous time networks model interphase expression of a cell based on interaction weights that are free to take positive and negative real values.

Neural Networks: Introduction VI

Figure 6: Example of a neural network topology with input and output layers and one hidden layer.

Neural Networks: Introduction VII

A mostly complete chart ofBackfed Input CellInput CellNoisy Input CellHidden CellProbablistic Hidden CellSpiking Hidden CellOutput CellMatch Input Output CellRecurrent CellMemory CellDifferent Memory CellKernelConvolution or Pool

Neural Networks

02016 Fjodor van Veen - asimovinstitute.org

Feed Forward (FF)
Radial Basis Network (RBF)

Deep Feed Forward (DFF)

Long / Short Term Memory (LSTM)
Gated Recurrent Unit (GRU)

Denoising AE (DAE)

Sparse AE (SAE)

Figure 7: Overview of possible architectural designs of neural networks. Image taken from https://medium.com/@carynmccarthy15/a-beginners-guide-to-recurrent-neural-networks-bfacb27bddb6.

Backpropagation I

Prerequisite: Let $s \odot t\left((s \odot t)_{j}=s_{j} t_{j}\right)$ denote the Hadamard product (Schur product), i.e., the elementwise product of the two vectors

Let $C(w, b)$ be a cost function where w is a weight and b is a bias with two assumptions about the form of the cost function:

- a
- b
quadratic cost function

$$
\begin{gather*}
C=\frac{1}{2 n} \sum_{x}\left\|y(x)-a^{L}(x)\right\|^{2}, \tag{26}\\
C=\frac{1}{2}\left\|y-a^{L}\right\|^{2}=\frac{1}{2} \sum_{j}\left(y_{j}-a_{j}^{L}\right)^{2} . \tag{27}
\end{gather*}
$$

The goal of backpropagation is to compute the partial derivatives $\partial C / \partial w$ and $\partial C / \partial b$

$$
\begin{equation*}
a_{j}^{\prime}=\sigma\left(\sum_{k} w_{j k}^{\prime} a_{k}^{l-1}+b_{j}^{\prime}\right) \tag{17}
\end{equation*}
$$

Backpropagation II

$$
\begin{equation*}
a^{\prime}=\sigma\left(w^{\prime} a^{\prime-1}+b^{\prime}\right) . \tag{18}
\end{equation*}
$$

to compute a^{\prime} we compute $z^{\prime} \equiv w^{\prime} a^{\prime-1}+b^{\prime}$ weighted input to the neurons in layer I
$a^{\prime}=\sigma\left(z^{\prime}\right)$
z^{\prime}
$z_{j}^{\prime}=\sum_{k} w_{j k}^{\prime} a_{k}^{I-1}+b_{j}^{\prime}$
z_{j}^{\prime} is just the weighted input to the activation function for neuron j in layer I.
Let δ_{j}^{l} be the error in the j th neuron in the /th layer:

$$
\begin{equation*}
\delta_{j}^{\prime} \equiv \frac{\partial C}{\partial z_{j}^{\prime}} \tag{29}
\end{equation*}
$$

Backpropagation provides a procedure to compute the error δ_{j}^{\prime}. δ^{\prime} denotes the vector of errors associated with layer I.

For the error in the output layer L we have

Backpropagation III

$$
\begin{equation*}
\delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right) \tag{19}
\end{equation*}
$$

Proof: We have

$$
\begin{equation*}
\delta_{j}^{L}=\frac{\partial C}{\partial z_{j}^{L}} \tag{20}
\end{equation*}
$$

and with the chain rule we obtain

$$
\begin{align*}
\delta_{j}^{L} & =\sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}} \tag{21}\\
& =\frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}} \tag{22}
\end{align*}
$$

because the sum is over all neurons k in the output layer and the output activation a_{k}^{L} of the k th neuron depends only on the weighted input z_{j}^{L} for the j th neuron when $k=j$. If $k \neq j \partial a_{k}^{L} / \partial z_{j}^{L}$ is zero.

Backpropagation IV

Since $a_{j}^{L}=\sigma\left(z_{j}^{L}\right)$ we write $\sigma^{\prime}\left(z_{j}^{L}\right)$ we have Equation 22

$$
\begin{equation*}
\delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right) \tag{23}
\end{equation*}
$$

proving our assumption.

$$
\begin{gather*}
\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right) . \tag{24}\\
\delta^{L}=\left(a^{L}-y\right) \odot \sigma^{\prime}\left(z^{L}\right) . \tag{25}
\end{gather*}
$$

An equation for the error δ^{\prime} in terms of the error in the next layer, $\delta^{\prime+1}$

$$
\begin{equation*}
\delta^{\prime}=\left(\left(w^{\prime+1}\right)^{T} \delta^{\prime+1}\right) \odot \sigma^{\prime}\left(z^{\prime}\right) \tag{26}
\end{equation*}
$$

Proof: We rewrite $\delta_{j}^{l}=\partial C / \partial z_{j}^{\prime}$ in terms of $\delta_{k}^{I+1}=\partial C / \partial z_{k}^{l+1}$

Backpropagation V

$$
\begin{align*}
\delta_{j}^{\prime} & =\frac{\partial C}{\partial z_{j}^{\prime}} \tag{27}\\
& =\sum_{k} \frac{\partial C}{\partial z_{k}^{I+1}} \frac{\partial z_{k}^{I+1}}{\partial z_{j}^{\prime}} \tag{28}\\
& =\sum_{k} \frac{\partial z_{k}^{\prime+1}}{\partial z_{j}^{\prime}} \delta_{k}^{I+1} . \tag{29}
\end{align*}
$$

Note that

$$
\begin{equation*}
z_{k}^{I+1}=\sum_{j} w_{k j}^{I+1} a_{j}^{I}+b_{k}^{I+1}=\sum_{j} w_{k j}^{I+1} \sigma\left(z_{j}^{I}\right)+b_{k}^{I+1} \tag{30}
\end{equation*}
$$

and taking the derivative

$$
\begin{equation*}
\frac{\partial z_{k}^{I+1}}{\partial z_{j}^{\prime}}=w_{k j}^{I+1} \sigma^{\prime}\left(z_{j}^{l}\right) \tag{31}
\end{equation*}
$$

we get

Backpropagation VI

$$
\begin{gather*}
\delta_{j}^{\prime}=\sum_{k} w_{k j}^{I+1} \delta_{k}^{I+1} \sigma^{\prime}\left(z_{j}^{\prime}\right) \tag{32}\\
\frac{\partial C}{\partial b_{j}^{\prime}}=\delta_{j}^{\prime} \tag{33}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial C}{\partial b}=\delta \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial C}{\partial w_{j k}^{\prime}}=a_{k}^{\prime-1} \delta_{j}^{\prime} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial C}{\partial w}=a_{\mathrm{in}} \delta_{\mathrm{out}} \tag{36}
\end{equation*}
$$

Backpropagation VII

```
Algorithm 3 Backpropagation Algorithm (single input)
    repeat
    Set the corresponding activation \(a^{1}\) for the input layer
    for \(I=2,3, \ldots, L\) do
        \(z^{\prime}=w^{\prime} a^{\prime-1}+b^{\prime}\)
        \(a^{\prime}=\sigma\left(z^{\prime}\right)\)
    end for
    \(\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)\)
    for \(I=L-1, L-2, \ldots, 2\) do
        \(\delta^{\prime}=\left(\left(w^{\prime+1}\right)^{T} \delta^{\prime+1}\right) \odot \sigma^{\prime}\left(z^{\prime}\right)\)
    end for
    \(\frac{\partial C}{\partial w_{j k}^{\prime}}=a_{k}^{I-1} \delta_{j}^{l}\)
    \(\frac{\partial C}{\partial b_{j}^{\prime}}=\delta_{j}^{l}\)
    until convergence is reached
```


Backpropagation VIII

```
Algorithm 4 Backpropagation Algorithm (batch input)
    repeat
    for each sample \(x\) do
            Set the corresponding activation \(a^{x, 1}\) for the input layer
            for \(I=2,3, \ldots, L\) do
            \(z^{\prime}=w^{\prime} a^{\prime-1}+b^{\prime}\)
                \(a^{\prime}=\sigma\left(z^{\prime}\right)\)
            end for
            \(\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)\)
            for \(I=L-1, L-2, \ldots, 2\) do
            \(\delta^{\prime}=\left(\left(w^{\prime+1}\right)^{T} \delta^{\prime+1}\right) \odot \sigma^{\prime}\left(z^{\prime}\right)\)
            end for
        end for
    for \(I=L, L-1, \ldots, 2\) do
            \(w^{\prime} \rightarrow w^{\prime}-\frac{\eta}{m} \sum_{x} \delta^{x, l}\left(a^{x, l-1}\right)^{T}\)
            \(b^{\prime} \rightarrow b^{\prime}-\frac{\eta}{m} \sum_{x} \delta^{x, l}\)
    end for
    \(\frac{\partial C}{\partial w_{j k}^{I}}=a_{k}^{I-1} \delta_{j}^{\prime}\)
    \(\frac{\partial C}{\partial b_{j}^{\prime}}=\delta_{j}^{\prime}\)
    until convergence is reached
```


Classification I

Let us look at the problem of classifying walks into random walk and self-avoiding walk. Below are two images from a set of generated images.

random walk

Self avoiding walk

Classification: Example

Classification: Example

./progs/Walkclassifier.py

Classification: Example

Classification: Example

./progs/Walkclassifier.py

Classification: Example

Classification: Example

```
x = tf.placeholder(dtype= tf.float32, shape = [None, crop_L,
    crop_L])
y=tf.placeholder(dtype=tf.int32, shape = [None])
# Flatten the input data
images_flat = tf.contrib.layers.flatten(x)
# Fully connected layer
fully_connected1 = tf.contrib.layers.fully__connected (
images_flat, 12, tf.nn.relu)
fully_connected2 = tf.contrib.layers.fully__connected (
    fully_connected1, 6, tf.nn.relu)
    logits = tf.contrib.layers.fully_connected(fully_connected2,
    12, tf.nn.relu)
# Define a loss function
loss=tf.reduce_mean(tf.nn.
sparse_softmax_cross_entropy_with_logits(labels = y ,
    logits = logits))
# Define an optimizer
train_op = tf.train. AdagradOptimizer(learning_rate=0.001,
name="Optimizer").minimize(loss)
\# Convert logits to label indexes
```


Classification: Example

```
# Define an accuracy metric
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    print("images_flat: ", images_flat)
    print("logits: ", logits)
    print("loss: ", loss)
    print("predicted_labels: ", correct_pred)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(201):
    print('EPOCH', i)
    _, accuracy_val = sess.run([train_op, accuracy],
    feed_dict={x: images, y: labels })
    if i % 10=0:
```

./progs/Walkclassifier.py

Classification: Example

Classification: Example

Classification: Example

Classification: Example I

The result of the classifcation after minimal training is already very impressive.

Hidden Markov Model I

Example I

- We would like to identify stretches of sequences that are actually functional (code for proteins or have regulatory functions) from non-coding or junk sequences.
- In prokaryotic DNA we have only two kinds of regions, ignore regulatory sequences which are coding (+) and non-coding (-) and the four letters A, C, G,T.

Hidden Markov Model I

- This simulates a very common phenomenon [14]:

There is some underlying dynamic system running along according to simple and uncertain dynamics, but we cannot see it.

- All we can see are some noisy signals arising from the underlying system. From those noisy observations we want to do things like predict the most likely underlying system state, or the time history of states, or the likelihood of the next observation

What are Hidden Markov Models good for?

- useful for modeling protein/DNA sequence patterns
- probabilistic state-transition diagrams
- Markov processes - independence from history
- hidden states

Where does one use HMM's I

- protein families
- DNA patterns
- secondary structure (helix, strand, coil (each has 20×20 table with transition frequencies between neighbors $\left.a_{i} \rightarrow a_{i+1}\right)$)
- protein fold recognition
- fold classification
- gene silencing
- ...

Example I

- Example: CpG - Islands

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its $5^{\prime} \rightarrow 3^{\prime}$ direction. (definition from Wikipedia)

- Regions labeled as CpG - islands $\longrightarrow+$ model
- Regions labeled as non-CpG - islands \longrightarrow - model
- Maximum likelihood estimators for the transition probabilities for each model

$$
a_{s t}=\frac{c_{s t}}{\sum_{t^{\prime}} c_{s t^{\prime}}}
$$

and analogously for the - model. $c_{s t}$ is the number of times letter t followed letter s in the labeled region.

Definition I

- A Hidden Markov Model is a two random variable process, in which one of the random variables is hidden, and the other random variable is observable.
- It has a finite set of states, each of which is associated with a probability distribution.
- Transitions among the states are governed by transition probabilities.
- In a particular state an observation can be generated, according to the associated probability distribution.
- It is only the observation, not the state visible to an external observer, and therefore states are "hidden" from the observer.

Example I

■ ■ For DNA, let + denote coding and - non-coding. Then a possible observed sequence could be

$$
O=A A C C T T C C G C G C A A T A T A G G T A A C C C C G G
$$

and

$$
Q=--+++++++++++++++++--------
$$

- Question: How can one find CpG - islands in a long chain of nucleotides?
- Merge both models into one model with small transition probabilities between the chains.

Definition (formal) I

A Hidden Markov Model (HMM) $\lambda=<Y, S, A, B>$ consists of:

- an output alphabet $Y=\{1, \ldots, b\}$
- a state space $S=\{1, \ldots, c\}$ with a unique initial state so
- a transition probability distribution $A\left(s^{\prime} \mid s\right)$
- an emission probability distribution $B\left(y \mid s, s^{\prime}\right)$
- HMMs are equivalent to (weighted) finite state automata with outputs on transitions.
- Unlike MMs, constructing HMMs, estimating their parameters and computing probabilities are not so straightforward.

Definition (formal) II

Probabilities I

Given a HMM λ and a state sequence $S=\left(s_{1}, \ldots, s_{t+1}\right)$, the probability of an output sequence $O=\left(o_{1}, \ldots, o_{t}\right)$ is

$$
\begin{equation*}
P(O \mid S, \lambda)=\prod_{i=1}^{t} P\left(o_{i} \mid s_{i}, s_{i+1}, \lambda\right)=\prod_{i=1}^{t} B\left(o_{i} \mid s_{i}, s_{i+1}\right) \tag{37}
\end{equation*}
$$

Given λ, the probability of a state sequence $S=\left(s_{1}, \ldots, s_{t+1}\right)$ is

$$
\begin{equation*}
P(S \mid \lambda)=\prod_{i=1}^{t} P\left(s_{i+1} \mid s_{i}\right)=\prod_{i=1}^{t} A\left(s_{i+1} \mid s_{i}\right) \tag{38}
\end{equation*}
$$

Of importance is the probability of an output sequence $O=\left(o_{1}, \ldots, o_{t}\right)$ under a given λ. It is easy to show that the straightforward computation yields

$$
\begin{equation*}
P(O \mid \lambda)=\sum_{S} \prod_{i=1}^{t} A\left(s_{i+1} \mid s_{i}\right) B\left(o_{i} \mid s_{i}, s_{i+1}\right) \tag{39}
\end{equation*}
$$

with a computational complexity of $(2 c+1) * c^{t+1}$ multiplications.

Example I

Example: Multiple Sequence Alignments

- In theory, making an optimal alignment between two sequences is computationally straightforward (Smith-Waterman algorithm), but aligning a large number of sequences using the same method is almost impossible (e.g. $O\left(t^{N}\right)$).
- The problem increases exponentially with the number of sequences involved (the product of the sequence lengths).
- Statistical Methods:
- Expectation Maximization Algorithm (deterministic).
- Gibbs Sampler (stochastic).
- Hidden Markov Models (stochastic).

■ Advantages for HMM: theoretical explanation, no sequence ordering, no insertion and deletion penalties, using prior information.

- Disadvantage for HMM: large number of sequences for training.

Example II

Basic Problem I

- There are three basic problems:

1 Given a model, how likely is a specific sequence of observed values (evaluation problem).
\int Given a model and a sequence of observations, what is the most likely state sequence in the model that produces the observations (decoding problem).

3 Given a model and a set of observations, how should the model's parameters be updated so that it has a high probability of generating the observations (learning problem).

Forward algorithm I

- We define $\alpha_{s}(i)$ as the probability being in state s at position i :

$$
\begin{equation*}
\alpha_{s}(i)=P\left(o_{1}, \ldots, o_{i}, s_{i}=s \mid \lambda\right) \tag{40}
\end{equation*}
$$

- Base case: $\alpha_{s}(1)$ if $s=s_{0}$ and $\alpha_{s}(0)=0$ otherwise
- Induction:

$$
\begin{equation*}
\alpha_{s}(i+1)=\max _{s \in S} A\left(s \mid s^{\prime}\right) B\left(o_{i} \mid s^{\prime}, s\right) \alpha_{s}(i) . \tag{41}
\end{equation*}
$$

- Finally, at the end:

$$
\begin{equation*}
P\left(o_{1}, \ldots, o_{k} \mid \lambda\right)=\sum_{s \in S} \alpha_{s}(k) . \tag{42}
\end{equation*}
$$

- Partial sums could as well be computed right to left (backward algorithm), or from the middle out
- In general, for any position i :

$$
\begin{equation*}
P(O \mid \lambda)=\sum_{s \in S} \alpha_{s}(i) \beta_{s}(i) . \tag{43}
\end{equation*}
$$

- This algorithm could be used, e.g. to identify which λ is most likely to have produced an output sequence O.

Forward algorithm II

What is the most probable path given observations (decoding problem)?

■ Given o_{1}, \ldots, o_{t} what is

$$
\begin{equation*}
\operatorname{argmax}_{S} P\left(s, o_{1}, \ldots o_{t} \mid \lambda\right) ? \tag{44}
\end{equation*}
$$

- Slow and stupid answer:

$$
\begin{equation*}
\operatorname{argmax}_{S} \frac{P\left(o_{1}, \ldots, o_{t} \mid s\right) P(s)}{P\left(o_{1}, \ldots, o_{t}\right)} \tag{45}
\end{equation*}
$$

Viterbi algorithm I

- We define $\delta_{s}(i)$ as the probability of the most likely path leading to state s at position i :

$$
\begin{equation*}
\delta_{s}(i)=\max _{s_{1}, \ldots, s_{i-1}} P\left(s_{1}, \ldots, s_{i-1}, o_{1}, \ldots, o_{i-1}, s_{i}=s \mid M\right) \tag{46}
\end{equation*}
$$

- Base case: $\delta_{s}(1)$ if $s=s_{0}$ and $\delta_{s}(0)=0$ otherwise
- Again we proceed recursively:

$$
\begin{equation*}
\delta_{s}(i+1)=\max _{s \in S} A\left(s \mid s^{\prime}\right) B\left(o_{i} \mid s^{\prime}, s\right) \delta_{s}(i) \tag{47}
\end{equation*}
$$

and since we want to know the identity of the best state sequence and not just its probability, we also need

$$
\begin{equation*}
\Psi(i+1)=\operatorname{argmax}_{s \in S} A\left(s \mid s^{\prime}\right) B\left(o_{i} \mid s^{\prime}, s\right) \delta_{s}(i) \tag{48}
\end{equation*}
$$

- Finally, we can follow Ψ backwards from the most likely final state.
- The Viterbi algorithm efficiently searches through $|S|^{T}$ paths for the one with the highest probability in $O\left(T|S|^{2}\right)$ time.

Viterbi algorithm II

- In practical applications, use log probabilities to avoid underflow errors.
- Can be easily modified to produce the n best paths.
- A beam search can be used to prune the search space further when $|S|$ is very large (n-gram models).

n-gram Models I

- Predicting the next state s_{n} depending on s_{1}, \ldots, s_{n-1} results in

$$
\begin{equation*}
P\left(s_{n} \mid s_{1}, \ldots, s_{n-1}\right) \tag{49}
\end{equation*}
$$

- Markov Assumption ($n-1$)th order: last $n-1$ states are in the same equivalence class.

Parameter estimation I

- Given an HMM with a fixed architecture, how do we estimate the probability distributions A and B ?
- If we have labeled training data, this is not any harder than estimating non-Hidden Markov Models (supervised training):

$$
\begin{align*}
A\left(s^{\prime} \mid s\right) & =\frac{C\left(s \rightarrow s^{\prime}\right)}{\sum_{s^{\prime \prime}} C\left(s \rightarrow s^{\prime \prime}\right)} \tag{50}\\
B\left(o \mid s, s^{\prime}\right) & =\frac{C\left(s \rightarrow s^{\prime}, o\right)}{C\left(s \rightarrow s^{\prime}\right)} \tag{51}
\end{align*}
$$

Forward-Backward Algorithm I

- Also known as the Baum-Welch algorithm.
- Instance of the Expectation Maximization (EM) algorithm:

I Choose a model at random.
E E: Find the distribution of state sequences given the model.
3 M: Find the most likely model given those state sequences.
4 Go back to 2 .

- Our estimate of A is:

$$
\begin{equation*}
A\left(s^{\prime} \mid s\right)=\frac{E\left[C\left(s \rightarrow s^{\prime}\right)\right]}{E[C(s \rightarrow ?)]} \tag{52}
\end{equation*}
$$

Forward-Backward Algorithm II

- We estimate $E\left[C\left(s \rightarrow s^{\prime}\right)\right]$ via $\tau_{t}\left(s, s^{\prime}\right)$, the probability of moving from state s to state s^{\prime} at position t given the output sequence O :

$$
\begin{align*}
\tau_{t}\left(s, s^{\prime}\right) & =P\left(s_{t}=s, s_{t+1}=s^{\prime} \mid O, \lambda\right) \tag{53}\\
& =\frac{P\left(s_{t}=s, s_{t+1}=s^{\prime}, O \mid \lambda\right)}{P(O \mid \lambda)} \tag{54}\\
& =\frac{\alpha_{s}(t) A\left(s \mid s^{\prime}\right) B\left(o_{t+1} \mid s, s^{\prime}\right) \beta_{s^{\prime}}(t+1)}{\sum_{s^{\prime \prime}} \alpha_{s^{\prime \prime}}} \tag{55}
\end{align*}
$$

- This lets us estimate A :

$$
\begin{equation*}
A\left(s^{\prime} \mid s\right)=\frac{\sum_{t} \tau_{t}\left(s, s^{\prime}\right)}{\sum_{t} \sum_{s^{\prime \prime}} \tau_{t}\left(s, s^{\prime \prime}\right)} \tag{56}
\end{equation*}
$$

- We can estimate B along the same lines, using $\sigma_{t}\left(o, s, s^{\prime}\right)$, the probability of emitting o while moving from state s to state s^{\prime} at position t given the output sequence O.
- Alternate re-estimating A from τ, then τ from A, until estimates stop changing.
- If the initial guess is close to the right solution, this will converge to an optimal solution.

Reinforcement Learning I

The fundamental idea of reinforcement learning is to interaction with the environment and learn from this interaction. Let \mathcal{S} denote the states that the environment can be in and \mathcal{A} the actions that an agent interacting with the environment can take [15-17]. For each interaction the agent gets a return or reward $r \in \mathcal{R}$. The agent is trained maximizing the cumulative reward. The actions are chosen according to a policy π.

Environment

Image taken from: Kenji
Doya (DOI:
10.2976/1.2732246)

State cycle for the reinforcement learning

Reinforcement Learning II

Figure 8

Let π be a policy mapping a state to an action

$$
\begin{align*}
\pi: \mathcal{S} & \rightarrow \mathcal{A} \tag{57}\\
s & \mapsto a \tag{58}
\end{align*}
$$

The state cycle (c.f. Figure 8) is

$$
\begin{align*}
t: s_{t} \rightarrow a_{t} & \rightarrow s_{t+1} \tag{59}\\
\left(s_{t}, a_{t}, s_{t+1}\right) & \rightarrow r_{t+1} \tag{60}
\end{align*}
$$

Let τ be a sequence or trajectory under π

$$
\begin{equation*}
\tau:\left(s_{1}, a_{1}, r_{1}, \ldots, s_{T}, a_{T}, r_{T}\right) \sim \pi \tag{61}
\end{equation*}
$$

Reinforcement Learning III

where T is the horizon. We have $a_{i} \sim \pi_{\theta}\left(a_{i} \mid s_{i}\right)$ and $s_{i} \sim P\left(s_{i} \mid s_{i-1}, a_{i-1}\right)$. Since the next state in the trajectory depends only on the immediate predecessor we have

$$
\begin{equation*}
P_{\theta}\left(s_{1}, a_{1}, r_{1}, \ldots, s_{T}, a_{T}, r_{T}\right)=\mu\left(s_{1}\right) \prod_{i=2}^{T} \pi\left(a_{i} \mid s_{i}\right) P\left(s_{i} \mid s_{i-1}, a_{i-1}\right) \tag{62}
\end{equation*}
$$

that the probability P to get the trajectory τ is split into individual transitions and represents the dynamics (Markov chain). μ is the starting state distribution. Such a sequence can be obtained using Monte Carlo methods.

The policy function is usually parameterized with a parameter θ :

$$
\begin{equation*}
\pi_{\theta}(s)=\pi(a \mid s, \theta)=p(a \mid s ; \theta) \tag{63}
\end{equation*}
$$

Our objective is to maximize the return

$$
\begin{equation*}
\max _{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]=\max _{\theta} \int \pi_{\theta}(\tau) R(\tau) d \tau \tag{64}
\end{equation*}
$$

with the return function R that usually is a function of $\left(s_{i}, a_{i}, s_{i+1}\right)$. Hence we want to find

Reinforcement Learning IV

$$
\begin{align*}
\theta^{*} & =\arg \max _{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t}^{T} r\left(s_{t}, a_{t}\right)\right] \tag{65}\\
\theta^{*} & =\arg \max _{\theta} \mathbb{E}_{(s . a) \sim \pi_{\theta}(s, a)}[r(s, a)] \tag{66}
\end{align*}
$$

for finite horizon and infinite horizon respectively. Maximizing could be done by taking the derivative with respect to the return. However, the return may not be differentiable. This could be rectified by using a neural network (see later). We will take the approach of the policy gradient, i.e., taking the derivative with respect to the policy (parameter θ).

We have assumed that the policy is stochastic, i.e., mapping state s under the condition of parameter value θ to a with probability p. We distinguish between deterministic and stochastic policies:

- deterministic policy: $\pi(a \mid s, \theta)=1$,
- Stochastic policy: $\pi(a \mid s, \theta)=p(a \mid s ; \theta)$.

We have the choice to optimize values or actions:

Reinforcement Learning V

- Values policy: Learn the interaction between states, actions and subsequent rewards.
- Action policy: Determine which is the best action to choose given the above.

Let $V^{\pi}(s)$ be the value of state s following policy π (value-state function):

$$
\begin{equation*}
V^{\pi}(s)=\mathbb{E}_{\mathrm{a} \sim \pi}\left[G_{t} \mid S_{t}=s\right] \tag{67}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{t}=\sum_{k=0}^{T} \gamma^{k} r_{t+k+1} \tag{68}
\end{equation*}
$$

is the cumulative discounted return with discount parameter $\gamma(0<\gamma \leq 1)$.
Further, let $Q^{\pi}(s, a)$ be the action-value function

$$
\begin{equation*}
Q^{\pi}(s, a)=\mathbb{E}_{\mathrm{a} \sim \pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \tag{69}
\end{equation*}
$$

and

Reinforcement Learning VI

$$
\begin{equation*}
A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s) \tag{70}
\end{equation*}
$$

the advantage telling us how much better or worse the action a is. Note that in complex formulae, for clarity, we are dropping the subscript θ.

We can define the reward function in terms of the state-value or action-state function as

$$
\begin{equation*}
J(\theta)=\sum_{s \in \mathcal{S}} d^{\pi}(s) V^{\pi}(s)=\sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \tag{71}
\end{equation*}
$$

where $d^{\pi}(s)=\lim _{t \rightarrow \infty} P\left(s_{t}=s \mid s_{0}, \pi_{\theta}\right)$, i.e., the stationary distribution of the Markov chain of the policy π.

We want to take the gradient of the reward function to maximize the return with respect to the policy parameterized by θ. Before we do this, consider the following:

Reinforcement Learning VII

$$
\begin{align*}
\nabla_{\theta} \mathbb{E}_{X \sim p(X \mid \theta)}[f(X)] & =\nabla_{\theta}\left(\int_{\mathcal{X}} f(X) p(X \mid \theta) d X\right) \tag{72}\\
& =\int_{\mathcal{X}} f(X) \nabla_{\theta}(p(X \mid \theta)) d X \tag{73}\\
& =\int_{\mathcal{X}} f(X) p(X \mid \theta) \frac{\nabla_{\theta}(p(X \mid \theta))}{p(X \mid \theta)} d X \tag{74}\\
& =\int_{\mathcal{X}} f(X) p(X \mid \theta) \nabla_{\theta}(\log p(X \mid \theta)) d X \tag{75}\\
& =\mathbb{E}_{X \sim p(X \mid \theta)}\left[f(X) \nabla_{\theta}(\log p(X \mid \theta))\right] \tag{76}
\end{align*}
$$

Hence, for the policy this implies

$$
\begin{equation*}
\nabla_{\theta} \pi_{\theta}(s, a)=\pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}=\pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \tag{77}
\end{equation*}
$$

We define the score function to be

$$
\begin{equation*}
\nabla_{\theta} \log \pi_{\theta}(s, a) \tag{78}
\end{equation*}
$$

Reinforcement Learning VIII

It describes how sensitive the stochastic policy π to is to changes in θ, i.e. how likely the trajectory is under the current policy.

Example: Policy function

Let us look at the following example of the policy function for a linear model for the unnormalized log-probability: $\phi(s, a)^{T} \theta$ i.e. weighting of the actions using a linear combination of features $\phi(s, a)$

The score function for a softmax policy is:

$$
\begin{align*}
\pi_{\theta}(s, a) & =\frac{e^{\phi(s, a)^{T} \theta}}{\sum_{a^{\prime} \in \mathcal{A}} e^{\phi\left(s, a^{\prime}\right)^{T} \theta}} \tag{79}\\
\nabla_{\theta} \log \pi_{\theta}(s, a) & =\phi(s, a)-\mathbb{E}_{\pi_{\theta}}[\phi(s, \cdot)] \tag{80}\\
h_{\theta}(x) & =\frac{1}{1+e^{-\theta^{T} x}} \tag{81}
\end{align*}
$$

Reinforcement Learning IX

Stochastic Gradient Policy Theorem

$$
\begin{equation*}
\nabla_{\theta} J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)\right] . \tag{82}
\end{equation*}
$$

Hence, the computation of the policy gradient reduces to a simple expectation. Thus, we are looking for sampling algorithms were trajectories are generated, the action value or value state function being evaluated along the trajectory (sometimes called play out or episode) and the gradient of the log of the policy computed.

To show the above statement, we take the following steps (see Lilian Weng https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html):

Reinforcement Learning X

$$
\begin{align*}
\nabla_{\theta} V^{\pi}(s) & =\nabla_{\theta}\left[\sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)\right] \tag{83}\\
& =\sum_{a \in \mathcal{A}}\left[\nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)+\pi_{\theta}(a \mid s) \nabla_{\theta} Q^{\pi}(s, a)\right] \tag{84}\\
& =\sum_{a \in \mathcal{A}}\left[\nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)+\pi_{\theta}(a \mid s) \nabla_{\theta} \sum_{s^{\prime}, r} P\left(s^{\prime}, r \mid s, a\right)\left(r+V^{\pi}\left(s^{\prime}\right)\right)\right] \\
& =\sum_{a \in \mathcal{A}}\left[\nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)+\pi_{\theta}(a \mid s) \sum_{s^{\prime}, r} P\left(s^{\prime}, r \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right)\right] \tag{85}\\
& =\sum_{a \in \mathcal{A}}\left[\nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a)+\pi_{\theta}(a \mid s) \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right)\right] . \tag{87}
\end{align*}
$$

Reinforcement Learning XI

$$
\begin{align*}
\nabla_{\theta} V^{\pi}(s) & =\phi(s)+\sum_{a} \pi_{\theta}(a \mid s) \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \tag{88}\\
& =\phi(s)+\sum_{s^{\prime}} \sum_{a} \pi_{\theta}(a \mid s) P\left(s^{\prime} \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \tag{89}\\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \tag{90}\\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \tag{91}\\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right)\left[\phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s^{\prime} \rightarrow s^{\prime \prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime \prime}\right)\right] \tag{92}\\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s \rightarrow s^{\prime \prime}, 2\right) \nabla_{\theta} V^{\pi}\left(s^{\prime \prime}\right) \tag{93}\\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s \rightarrow s^{\prime \prime}, 2\right) \phi\left(s^{\prime \prime}\right)+\ldots \tag{94}\\
& =\ldots ; \text { Repeatedly unrolling the part of } \nabla_{\theta} V^{\pi}(.) \tag{95}\\
& =\sum_{x \in \mathcal{S}} \sum_{k=0}^{\infty} \rho^{\pi}(s \rightarrow x, k) \phi(x) . \tag{96}
\end{align*}
$$

Reinforcement Learning XII

$$
\begin{align*}
\nabla_{\theta} J(\theta) & =\nabla_{\theta} V^{\pi}\left(s_{0}\right) \tag{97}\\
& =\sum_{s} \sum_{k=0}^{\infty} \rho^{\pi}\left(s_{0} \rightarrow s, k\right) \phi(s) \tag{98}\\
& =\sum_{s} \eta(s) \phi(s) \tag{99}\\
& =\left(\sum_{s} \eta(s)\right) \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s) \tag{100}\\
& \propto \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s) \tag{101}\\
& =\sum_{s} d^{\pi}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \tag{102}
\end{align*}
$$

$\sum_{s} \eta(s)$ is the average length of the episode in the continuous case. And further

Reinforcement Learning XIII

$$
\begin{align*}
\nabla_{\theta} J(\theta) & \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s) \tag{103}\\
& =\sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(a \mid s)}{\pi_{\theta}(a \mid s)} \tag{104}\\
& =\mathbb{E}_{\pi}\left[Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \tag{105}
\end{align*}
$$

Reinforcement Learning XIV

Actually, the question is how to compute the score function

$$
\begin{equation*}
\nabla_{\theta} \log \pi_{\theta}(s, a) \tag{106}
\end{equation*}
$$

Reinforcement Learning XV

specifically under light that gradients can be very noisy. They suffer from high variance and low convergence. We have

$$
\begin{align*}
\nabla_{\theta} \log P_{\theta}(\tau) & =\nabla \log \left(P\left(s_{1}\right) \prod_{t=1}^{T} \pi_{\theta}\left(a_{t} \mid s_{t}\right) P\left(s_{t+1} \mid s_{t}, a_{t}\right)\right) \tag{107}\\
& =\nabla_{\theta}\left[\log \mu\left(s_{1}\right)+\sum_{t=1}^{T}\left(\log \pi_{\theta}\left(a_{t} \mid s_{t}\right)+\log P\left(s_{t+1} \mid s_{t}, a_{t}\right)\right)\right] \tag{108}\\
& =\nabla_{\theta} \sum_{t=1}^{T} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \tag{109}
\end{align*}
$$

Using gradient ascend

$$
\begin{equation*}
\theta \leftarrow \theta+\alpha \nabla f(x) \tag{110}
\end{equation*}
$$

we can write the generic algorithm is as follows:

Reinforcement Learning XVI

```
Algorithm 5 Gradient Policy
    repeat
    \(\nabla_{\theta} J(\theta)=\frac{1}{N} \sum_{i=1}^{N}\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(s_{i, t}, a_{i, t}\right)\right)\left(\sum_{t=1}^{T} R\left(s_{i, t}, a_{i, t}\right)\right)\)
    \(\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)\)
    until finished
```

α is the learning rate determining the rate of convergence.

Monte-Carlo Policy Evaluation I

The Monte Carlo policy gradient or REINFORCE estimates (learns) the value state function V^{π} from episodes under policy π. Hence, we generate episodes

$$
\begin{equation*}
s_{1}, a_{1}, \ldots s_{T}, a_{T} \sim \pi . \tag{111}
\end{equation*}
$$

The Monte-Carlo policy evaluation uses empirical mean return instead of expected return. Note that for the cumulated discounted return we have

$$
\begin{equation*}
Q^{\pi}\left(s_{t}, a_{t}\right)=\mathbb{E}_{\pi}\left[G_{t} \mid a_{t}, a_{t}\right] \tag{112}
\end{equation*}
$$

and hence we can write

$$
\begin{align*}
\nabla_{\theta} J(\theta) & =\mathbb{E}_{\pi}\left[Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \tag{113}\\
& =\mathbb{E}_{\pi}\left[G_{t} \nabla_{\theta} \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)\right] \tag{114}
\end{align*}
$$

and sample the return. Our goal is find the policy, i.e. the value of θ maximizing the return

Monte-Carlo Policy Evaluation II

$$
\begin{equation*}
\theta^{*}=\arg \max _{\theta} \mathbb{E}_{\pi}\left[\sum_{t=1}^{T} \gamma^{t} r_{t}\right] \tag{115}
\end{equation*}
$$

Monte-Carlo Policy Evaluation: Algorithm I

A generic version is listed in Algorithm 6.

```
Algorithm 6 Generic Monte-Carlo Policy Evaluation: REINFORCE
    Initialize the policy parameter \(\theta\)
    repeat
            Generate episode using \(\pi_{\theta} \sim\left(s_{1}, a_{1}, \ldots, a_{T}, s_{T}\right)\)
            for \(t\) in range \((1, T)\) do
            Evaluate \(G_{t}\)
            \(\theta \leftarrow \theta+\alpha \gamma^{t} G_{t} \nabla_{\theta} \ln \pi_{\theta}\left(a_{t} \mid s_{t}\right)\)
        end for
    until false
```


Monte Carlo Policy Gradient: Example I

Figure 9: Balancing of a stick

Monte Carlo Policy Gradient: Example II

- The task at hand is to balance a stick in a one-dimensional setting. The stick is mounted frictionless on a rail and can be moved to left and to the right. The stick can rotate and is subject to gravitation (for info on the gym environment implementing the balance stick see https://github.com/openai/gym/wiki/CartPole-v0).
- Neglecting friction, the equations of motion are [18]:

$$
\begin{align*}
\ddot{x} & =\cdot \frac{F+m_{p} I\left(\alpha^{2} \sin \alpha-\ddot{\alpha} \cos \alpha\right)}{m_{c}+m_{p}} \tag{116}\\
\ddot{\alpha} & =\frac{g \sin \alpha+\cos \alpha\left(\cdot \frac{-F-m p_{1} \dot{\alpha}^{2} \sin \alpha}{m_{c}+m_{p}}\right)}{I\left(\frac{4}{3}-\frac{m_{p} \cos \alpha^{2}}{m_{c}+m_{p}}\right)} \tag{117}
\end{align*}
$$

- In this example we assume that there are two action $a=0,1$ or $a=-1,+1$ corresponding to left and right. The state of the system is given by a state vector with the components $s=($ position (x), velocity (v), stick angle (α), velocity at tip $\left.\left(v_{T}\right)\right)$.

Monte Carlo Policy Gradient: Example III

Table 1: openai CartPole v0 states (https://openai.com/resources/)

Num	Observation	Min	Max
0	Cart Position	-2.4	2.4
1	Cart Velocity	$-\operatorname{lnf}$	lnf
2	Pole Angle	$\sim-41.8^{\circ}$	$\sim 41.8^{\circ}$
3	Pole Velocity At Tip	$-\operatorname{lnf}$	lnf

- Since our action is binary, we can choose the logistic function as part of the policy π

$$
\begin{equation*}
\mathrm{L}(x)=\frac{1}{1+e^{-x}} \tag{118}
\end{equation*}
$$

- We can define the policy π as

$$
\begin{align*}
& \pi_{\theta}(s, a=0)=1-\mathrm{L}\left(s^{T} \theta\right) \tag{119}\\
& \pi_{\theta}(s, a=1)=\mathrm{L}\left(s^{T} \theta\right) \tag{120}
\end{align*}
$$

Monte Carlo Policy Gradient: Example IV

- Our task is to estimate the state action function

$$
\begin{equation*}
Q^{\pi}(s, a) \tag{121}
\end{equation*}
$$

from the discounted return function

$$
\begin{equation*}
G_{t}=r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\cdots+\gamma^{T-t} r_{T} \tag{122}
\end{equation*}
$$

where the reward is 1 for every step taken, including the termination step.

$$
\begin{equation*}
J(\theta) \approx \sum_{t=1}^{T} \pi\left(a_{t} \mid s_{t}, \theta\right) A_{t} \tag{123}
\end{equation*}
$$

- For one episode we have

$$
\begin{align*}
\nabla_{\theta} J(\theta) & \approx \sum_{t=1}^{T} G_{t} \nabla_{\theta} \log \pi_{\theta}(s, a) \tag{124}\\
\frac{d}{d x} \operatorname{sigmoid}(x) & =\operatorname{sigmoid}(x)(1-\operatorname{sigmoid}(x)) . \tag{125}
\end{align*}
$$

- The problem is considered solved when the average reward is greater than or equal to 195.0 over 100 consecutive trials.

Monte Carlo Policy Gradient: Example

Monte Carlo Policy Gradient: Example

```
def discounted_sum_of_rewards(rewards, gamma):
    cum = np.zeros_like(rewards)
    c = 0.0
    for i, r in enumerate(rewards [::-1]):
        c = r + gamma * c
        cum[i] = c
    return cum[::-1]
```


Monte Carlo Policy Gradient: Example I

Figure 10: Two examples of balancing of a stick using Monte Carlo policy gradient reinforcement learning. Max play out length was 1000 and 1000 episodes were calculated.

Monte-Carlo Policy Evaluation: Algorithm I

```
Algorithm 7 Generic Monte-Carlo Policy Evaluation
    Given \(\pi\) the policy to be evaluated
    Initialize \(V\) randomly
    Returns(s) \(\leftarrow\) empty list for all \(s \in S\)
    repeat
        Generate episode using \(\pi\)
        for \(s\) in trial do
            \(R \leftarrow\) return following the first occurrence of \(s\)
            Append \(R\) to Returns(s)
            \(V(s) \leftarrow\) average(Returns(s))
        end for
    until false
```


Bellman Equation:

$$
\begin{equation*}
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left(R_{s}^{a}+\gamma \sum_{s^{\prime} \in S} P_{s, s^{\prime}}^{a} V^{\pi}\left(s^{\prime}\right)\right) \tag{126}
\end{equation*}
$$

Monte-Carlo Policy Evaluation: Neural Network Policy I

- This works well because the output is a probability over available actions.
- If we feed it with a neural network, we will get higher values and thus we will be more likely to choose the actions that we learned produce a better reward.
- In the long-run, this will trend towards a deterministic policy, $\pi(a \mid s, \theta)=1$, but it will continue to explore as long as one of the probabilities does not dominate the others (which will likely take some time).

For the algorithm we are going to assume

- a differentiable policy parameterization $\pi(a \mid s, \theta)$
- and define the step-size $\alpha>0$.

Monte-Carlo Policy Evaluation: Neural Network Policy II

```
Algorithm 8 Generic Monte-Carlo Policy Evaluation Neural Network
    Initialize policy parameters \(\theta\)
    repeat
    Generate episode using \(\pi\)
    for \(N\) batches do
            Generate an episode \(s_{0}, a_{0}, r_{1}, \ldots, s_{T-1}, a_{T-1}, r_{T}\), following \(\pi(a \mid s, \theta)\)
            for \(t=0, \ldots, T-1\) do
                \(G_{t} \leftarrow\) from step \(t\)
            end for
            Calculate the loss \(L(\theta)=-\frac{1}{N} \sum_{t}^{T} \ln \left(\gamma^{t} G_{t} \pi\left(a_{t} \mid s_{t}, \theta\right)\right)\)
            Update policy parameters through backpropagation: \(\theta:=\theta+\alpha \nabla_{\theta} L(\theta)\)
    end for
    until \(n\) episodes
```

We are going to apply the neural network approach to the balancing of a stick problem defined above. We will be using a fully connected neural network as shown in Figure 11. The layer size is halved from one layer to the next. The last layer essentially represents a binary decision to move left or right.

Monte-Carlo Policy Evaluation: Neural Network Policy III

Figure 11: Principle design of the neural network to be used in the learning of the policy gradient in our example. All layers are fully connected. Only the last layers in this graph show the actual connectivity.

Monte Carlo Policy Gradient: Neural Network

```
import gym
    import tensorflow as tf
    from tensorflow.contrib.layers import fully_connected
    import warnings
    class policy_estimator(object):
    def __init__(self, sess, env):
        # Pass TensorFlow session object
        self.sess = sess
        # Get number of inputs and outputs from environment
        self.n_inputs = env.observation_space.shape [0]
        self.n_outputs = env.action_space.n
        self.learning_rate = 0.01
        # Define number of hidden nodes
        self.n_hidden_nodes = 256
        # Set graph scope name
        self.scope = "policy_estimator"
```


Monte Carlo Policy Gradient: Neural Network

```
# Create network
with tf.variable_scope(self.scope):
    initializer = tf.contrib.layers.xavier_initializer()
    # Define placholder tensors for state, actions,
    # and rewards
    self.state = tf.placeholder(tf.float 32,
    [None, self.n_inputs], name='state')
    self.rewards = tf.placeholder(tf.float32,
            [None], name='rewards')
    self.actions = tf.placeholder(tf.int32,
            [None], name='actions')
    layer_1 = fully_connected(self.state,
            self.n_hidden_nodes,
            activation_fn=tf.nn.swish,
            weights_initializer=initializer)
    layer_2 = fully_connected(layer_1,
            int(self.n_hidden_nodes/2),
```


Monte Carlo Policy Gradient: Neural Network

Monte Carlo Policy Gradient: Neural Network

Monte Carlo Policy Gradient: Neural Network

Monte Carlo Policy Gradient: Neural Network

```
    return probs
def update(self, gradient_buffer):
    feed = dict(zip(self.gradient_holder, gradient_buffer))
    self.sess.run([self.train_op], feed_dict=feed)
def get_vars(self):
    net_vars = self.sess.run(
        tf.trainable_variables(self.scope))
    return net_vars
def get_grads(self, states, actions, rewards):
    grads = self.sess.run([self.gradients],
        feed_dict={
        self.state: states,
        self.actions: actions,
            self.rewards: rewards
```


Monte Carlo Policy Gradient: Neural Network

Stability I

Stability:
Reinforcement learning is known to be unstable or even to diverge when a nonlinear function approximator such as a neural network is used to represent the action-value (also known as Q) function. This instability has several causes: the correlations present in the sequence of observations, the fact that small updates to Q may significantly change the policy and therefore change the data distribution, and the correlations between the action-values and the target values [19].

Stability II

Stability III

Figure 12: Demonstration of the variance involved in the REINFORCE algorithm. Here results from the application of neural network learning of the policy is shown. Shown are results for a neural network where the first layer consists of 128 fully connected nodes as shown schematically in Figure 11. The episode length was a maximum of 100.

Stability IV

Figure 13: Shown are results for a neural network where the first layer consists of 256 fully connected nodes as shown schematically in Figure 11. The sample used an episode length of a maximum of 200 .

REINFORCE Algorithm with Baseline I

To reduce the variance, the standard is to introduce a function $b\left(s_{t}\right)$ inside the expectation on which we are computing the gradient. b is supposed to be an expected return. Let $R(\tau)=\sum_{t=0}^{T-1} r_{t}$ where we have set the discount parameter equal to one. We can write

$$
\begin{align*}
\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] & =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\left(\sum_{t=0}^{T-1} r_{t}\right) \cdot \nabla_{\theta}\left(\sum_{t=0}^{T-1} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\right)\right] \tag{127}\\
& =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t^{\prime}=0}^{T-1} r_{t^{\prime}} \sum_{t=0}^{t^{\prime}} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\right] \tag{128}\\
& =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\left(\sum_{t^{\prime}=t}^{T-1} r_{t^{\prime}}\right)\right] \tag{129}
\end{align*}
$$

With this we can introduce the baseline function b

$$
\begin{equation*}
\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]=\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\left(\sum_{t^{\prime}=t}^{T-1} r_{t^{\prime}}-b\left(s_{t}\right)\right)\right] \tag{130}
\end{equation*}
$$

REINFORCE Algorithm with Baseline II

If γ is not one than

$$
\begin{align*}
\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] & =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\left(\sum_{t^{\prime}=t}^{T-1} r_{t^{\prime}}-b\left(s_{t}\right)\right)\right] \tag{131}\\
& \approx \mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\left(\sum_{t^{\prime}=t}^{T-1} \gamma^{t^{\prime}-t} r_{t^{\prime}}-b\left(s_{t}\right)\right)\right] \tag{132}
\end{align*}
$$

with the baseline

$$
\begin{equation*}
b\left(s_{t}\right) \approx \mathbb{E}\left[r_{t}+\gamma r_{t+1}+\cdots+\gamma^{T-1-t} r_{T-1}\right] \tag{133}
\end{equation*}
$$

The REINFORCE Algorithm with baseline is shown in Algorithm 9. Let

$$
\begin{equation*}
\theta_{p}:=\theta_{p}+\alpha_{p} \gamma^{t} \delta \nabla_{\theta p} \ln \left(\pi\left(a_{t} \mid s_{t}, \theta_{p}\right)\right. \tag{134}
\end{equation*}
$$

where δ is the difference between the actual value and the predicted value at that given state:

REINFORCE Algorithm with Baseline III

$$
\begin{equation*}
\delta=G_{t}-v\left(S_{t}, \theta_{v}\right) . \tag{135}
\end{equation*}
$$

Note that the subscripts p and v to differentiate between the policy estimation function and the value estimation function. Thus, we assume a differentiable policy parameterization $\pi\left(a \mid s, \theta_{p}\right)$ and a differentiable policy parameterization $v\left(s, \theta_{v}\right)$

REINFORCE Algorithm with Baseline IV

```
Algorithm 9 REINFORCE with baseline: Monte-Carlo policy gradient
    Define step-size \(\alpha_{p}>0, \alpha_{v}>0\)
    Initialize policy parameters \(\theta_{p}, \theta_{v}\)
    repeat
    for \(N\) batches do
            Generate an episode \(s_{0}, a_{0}, r_{1}, \ldots, s_{T-1}, a_{T-1}, r_{T}\), following \(\pi\left(a \mid s, \theta_{p}\right)\)
            for \(t=0, \ldots, T-1\) do
                \(G_{t} \leftarrow\) from step \(t\)
            end for
            \(\delta \leftarrow G_{t}-v\left(s, \theta_{v}\right)\)
            Calculate the loss \(L\left(\theta_{v}\right)=\frac{1}{N} \sum_{t}^{T}\left(\gamma^{t} G_{t}-v\left(s_{t}, \theta_{v}\right)\right)^{2}\)
            Calculate the loss \(L\left(\theta_{p}\right)=-\frac{1}{N} \sum_{t}^{T} \ln \left(\gamma^{t} \delta \pi\left(a_{t} \mid S_{t}, \theta_{p}\right)\right)\)
            Update policy parameters through backpropagation: \(\theta_{p}:=\theta_{p}+\alpha_{p} \nabla_{\theta}^{p} L\left(\theta_{p}\right)\)
            Update policy parameters through backpropagation: \(\theta_{v}:=\theta_{v}+\alpha_{v} \nabla_{\theta}^{v} L\left(\theta_{v}\right)\)
        end for
    until \(n\) episodes
```


Advantage Function I

Recall the definition of the action state function

$$
\begin{equation*}
Q^{\pi}(s, a)=\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} r_{t} \mid s_{0}=s, a_{0}=a\right] \tag{136}
\end{equation*}
$$

and the value-state function

$$
\begin{equation*}
V^{\pi}(s)=\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} r_{t} \mid s_{0}=s\right] \tag{137}
\end{equation*}
$$

and the advantage function

$$
\begin{equation*}
A^{\pi}(s, a)=Q^{\pi}(s, a)-V^{\pi}(s) \tag{138}
\end{equation*}
$$

We have [20]

Advantage Function II

$$
\begin{align*}
\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] & =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right)\left(\sum_{t^{\prime}=t}^{T-1} r_{t^{\prime}}-b\left(s_{t}\right)\right)\right] \tag{139}\\
& =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \cdot\left(Q^{\pi}\left(s_{t}, a_{t}\right)-V^{\pi}\left(s_{t}\right)\right)\right] \tag{140}\\
& =\mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \cdot A^{\pi}\left(s_{t}, a_{t}\right)\right] \tag{141}\\
& \approx \mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(a_{t} \mid s_{t}\right) \cdot A^{\pi, \gamma}\left(s_{t}, a_{t}\right)\right] \tag{142}
\end{align*}
$$

Q-Learning I

- Deep Q network and the epsilon-greedy policy.
- Q learning is a value based method of supplying information to inform which action an agent should take.
- In tabular Q-learning, for example, you are selecting the action that gives the highest expected reward ($m a x_{a}^{\prime} Q\left(s^{\prime}, a^{\prime}\right)$, possibly also in an ϵ-greedy fashion) which means if the values change slightly, the actions and trajectories may change radically.

The Q learning rule

$$
\begin{array}{r}
Q(s, a) \leftarrow Q(s, a)+\alpha\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right] \\
0 \leq \gamma \geq 1 \tag{144}
\end{array}
$$

with α being the learning rate.
Both α and the $Q(s, a)$ subtraction are not required to be explicitly defined in deep Q learning, as the neural network will take care of that during its optimized learning

Q-Learning II

process, i.e., deep Q-learning applies the Q-learning updating rule during the training process. A neural network is created which takes the state s as its input, and then the network is trained to output appropriate $Q(s, a)$ values for each action in state s.

Actor-Critic policy gradient algorithm I

Actor-critic methods consist of two models, which may optionally share parameters:

- Critic updates the value function parameters w and depending on the algorithm it could be action-value $Q_{w}(a \mid s)$ or state-value $V_{w}(s)$.
- Actor updates the policy parameters θ for $\pi_{\theta}(a \mid s)$ in the direction suggested by the critic.

Let α_{θ} and α_{w} be two learning rates. predefined for policy and value function parameter updates respectively. The actor-critic Monte-Carlo policy gradient algorithm is shown in Algorithm 10.

Actor-Critic policy gradient algorithm II

```
Algorithm 10 Actor-Critic: Monte-Carlo policy gradient
    Initialize \(s, \theta, w\) at random; sample \(a \sim \pi_{\theta}(a \mid s)\)
    for \(t(1, \ldots, \mathrm{~T})\) do
        Sample reward \(r_{t} \sim R(s, a)\) and next state \(s^{\prime} \sim P\left(s^{\prime} \mid s, a\right)\)
        Then sample the next action \(a^{\prime} \sim \pi_{\theta}\left(a^{\prime} \mid s^{\prime}\right)\)
        Update the policy parameters: \(\theta \leftarrow \theta+\alpha_{\theta} Q_{w}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\)
        Compute the correction (TD error) for action-value at time t :
        - \(\quad \delta_{t}=r_{t}+\gamma Q_{w}\left(s^{\prime}, a^{\prime}\right)-Q_{w}(s, a)\)
        - \(w \leftarrow w+\alpha_{w} \delta_{t} \nabla_{w} Q_{w}(s, a)\)
    7: Update \(a \leftarrow a^{\prime}\) and \(a \leftarrow s^{\prime}\)
    end for
```


ϵ Greedy Strategy I

Let r be a uniform random number. ϵ-greedy strategy

Figure 14: ϵ-greedy strategy. r is a uniform random number.

ϵ Greedy Strategy II

```
Algorithm 11 -greedy strategy
    for \(i(1, \ldots\), samples \()\) do
        \(r \sim\) uniform \((0,1)\)
        if \(r<\epsilon\) then
        choose random action
        else
        choose best action
        end if
    end for
```


Value Function Fitting

Double pendulum

Value Function Fitting: Example

Value Function Fitting: Example

```
    BATCH_SIZE=100
MAX_EPSILON = 1.0
MIN_EPSILON = 0.0
LAMBDA = 0.001
GAMMA =0.99
class Model:
    def __init__(self, num_states, num_actions, batch_size):
    self._num_states = num_states
    self._num_actions = num_actions
    self._batch_size = batch_size
    # define the placeholders
    self._states = None
    self._actions = None
```


Value Function Fitting: Example

```
# the output operations
self._logits = None
self._optimizer = None
self._var_init = None
# now setup the model
self._define_model()
def _define_model(self):
    self._states = tf.placeholder(shape=[None, self._num_states
], dtype=tf.float32)
    self._q_s_a = tf.placeholder(shape=[None, self.
_num_actions], dtype=tf.float32)
    # create a couple of fully connected hidden layers
    fc1 = tf.layers.dense(self._states, 50, activation
=tf.nn.relu)
    fc2 = tf.layers.dense(fc1, 50, activation=tf.nn.
relu)
    self._logits = tf.layers.dense(fc2, self._num_actions)
    loss
    = tf.losses.mean_squared_error(self._q_s_a,
    self._logits)
```


Value Function Fitting: Example

```
                    self._optimizer = tf.train.AdamOptimizer().minimize(loss)
self._var_init = tf.global_variables_initializer()
    def predict_one(self, state, sess):
        return sess.run(self._logits, feed_dict={self._states:
                                state.reshape
    (1, self._num_states)})
    def predict_batch(self, states, sess):
        return sess.run(self._logits, feed_dict={self._states:
    states})
    def train_batch(self, sess, x_batch, y_batch):
        sess.run(self._optimizer, feed_dict={self._states: x_batch,
    self._q_s_a: y_batch})
    class Memory:
    def __init__(self, max_memory):
```


Value Function Fitting: Example

```
    self._max_memory = max_memory
    self._samples = []
def add_sample(self, sample):
    self._samples.append(sample)
    if len(self._samples) > self._max_memory:
        self._samples.pop(0)
def sample(self, no_samples):
    if no_samples > len(self._samples):
        return random.sample(self._samples, len(self._samples))
    else:
        return random.sample(self._samples, no_samples)
    class GameRunner:
```


Value Function Fitting: Example

```
def __init__(self, sess, model, env, memory, max_eps, min_eps,
    decay, render=True):
        self._sess = sess
        self._env = env
        self._model = model
        self._memory = memory
        self._render = render
        self._max_eps = max_eps
        self._min_eps = min_eps
        self._decay = decay
        self._eps = self._max_eps
        self._steps = 0
        self._reward_store = []
        self._max_x_store = []
def run(self):
    state = self._env.reset()
    tot_reward = 0
```


Value Function Fitting: Example

```
max_x = -100
while True:
    if self._render:
        self._env.render()
    action = self._choose_action(state)
    next_state, reward, done, info = self._env.step(action)
    if next_state[0] >= 0.1:
        reward += 10
    elif next_state[0] >= 0.25:
        reward += 20
    elif next_state[0] >= 0.5:
        reward += 100
    if next_state[0] > max_x:
        max_x = next_state [0]
    # is the game complete? If so, set the next state to
    # None for storage sake
```


Value Function Fitting: Example

Value Function Fitting: Example

```
        print("Step {}, Total reward: {}, Eps: {}".format(self.
_steps, tot_reward, self._eps))
def _choose_action(self, state):
    if random.random() < self._eps:
            return random.randint(0, self._model._num_actions - 1)
        else:
            return np.argmax (self._model.predict_one(state, self.
_sess))
def _replay(self):
    batch = self._memory.sample(self._model._batch_size)
    states = np.array([val[0] for val in batch])
    next_states = np.array([(np.zeros(self._model._num_states)
                                if val[3] is None else val[3]) for
    val in batch])
    # predict Q(s,a) given the batch of states
```


Value Function Fitting: Example

```
q_s_a = self._model.predict_batch(states, self._sess)
# predict Q(s',a') - so that we can do gamma * max(Q(s'a'))
below
    q_s_a_d = self._model.predict_batch(next_states, self._sess
)
    # setup training arrays
    x = np.zeros((len(batch), self._model._num_states))
    y = np.zeros((len(batch), self._model._num_actions))
    for i, b in enumerate(batch):
        state, action, reward, next_state = b [0], b[1], b[2], b
[3]
    # get the current q values for all actions in state
    current_q = q_s_a[i]
    # update the q value for action
    if next_state is None:
        # in this case, the game completed after action, so
there is no max Q(s',a')
        # prediction possible
        current_q[action] = reward
```


Value Function Fitting: Example

```
            else:
                current_q[action] = reward + GAMMA * np.amax(
    q_s_a_d[i])
            x[i] = state
            y[i] = current_q
            self._model.train_batch(self._sess, x, y)
    if __name__ == "__main__":
    env_name = 'MountainCar-v0,
    env_name = 'Acrobot-v1'
    env = gym.make(env_name)
    num_states = env.env.observation_space.shape [0]
    num_actions = env.env.action_space.n
    model = Model(num_states, num_actions, BATCH_SIZE)
    mem = Memory (50000)
```


Value Function Fitting: Example

```
with tf.Session() as sess:
    sess.run(model._var_init)
    gr = GameRunner(sess, model, env, mem, MAX_EPSILON,
MIN_EPSILON, LAMBDA)
    num_episodes = 300
    cnt = 0
    while cnt < num_episodes:
        if cnt % 10== 0:
                print('Episode {} of {}',format(cnt+1, num_episodes
    ))
        gr.run()
        cnt += 1
    plt.plot(gr._reward_store)
    plt.show()
    plt.close("all")
    plt.plot(gr._max_x_store)
    plt.show()
```


Continuous State and Action Space I

We will rely on the Stochastic Policy Gradient Theorem

$$
\begin{equation*}
\nabla_{\theta} J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)\right] . \tag{146}
\end{equation*}
$$

Hence, the computation of the policy gradient reduces to a simple expectation.
Policy modeling: parameterized by a function $\theta: \pi_{\theta}(a \mid s)$

$$
\begin{equation*}
J(\theta)=\sum_{s \in \mathcal{S}} d^{\pi}(s) V^{\pi}(s)=\sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \tag{147}
\end{equation*}
$$

where $d^{\pi}(s)$ is the stationary distribution of Markov chain for π_{θ} for which

$$
\begin{equation*}
d^{\pi}(s)=\lim _{t \rightarrow \infty} P\left(s_{t}=s \mid s_{0}, \pi_{\theta}\right) \tag{148}
\end{equation*}
$$

and this is the probability that $s_{t}=s$ when starting from s_{0} and following policy π_{θ} for t steps.

Problems:

Continuous State and Action Space II

- in generalized policy iteration, the policy improvement step $\arg \max _{a_{a \mathcal{A}}} Q^{\pi}(s, a)$ requires a full scan of the action space, suffering from the curse of dimensionality

$$
\begin{align*}
\nabla_{\theta} J(\theta) & =\nabla_{\theta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \pi_{\theta}(a \mid s) \tag{149}\\
& \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s) \tag{150}
\end{align*}
$$

Continuous State and Action Space III

$$
\begin{aligned}
\nabla_{\theta} V^{\pi}(s) & =\phi(s)+\sum_{a} \pi_{\theta}(a \mid s) \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \\
& =\phi(s)+\sum_{s^{\prime}} \sum_{a} \pi_{\theta}(a \mid s) P\left(s^{\prime} \mid s, a\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime}\right) \\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right)\left[\phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s^{\prime} \rightarrow s^{\prime \prime}, 1\right) \nabla_{\theta} V^{\pi}\left(s^{\prime \prime}\right)\right] \\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s \rightarrow s^{\prime \prime}, 2\right) \nabla_{\theta} V^{\pi}\left(s^{\prime \prime}\right) \\
& =\phi(s)+\sum_{s^{\prime}} \rho^{\pi}\left(s \rightarrow s^{\prime}, 1\right) \phi\left(s^{\prime}\right)+\sum_{s^{\prime \prime}} \rho^{\pi}\left(s \rightarrow s^{\prime \prime}, 2\right) \phi\left(s^{\prime \prime}\right)+\sum_{s^{\prime \prime \prime}} \rho^{\pi}\left(s \rightarrow s^{\prime \prime \prime}, 3\right) \\
& =\ldots ; \operatorname{Repeatedly} \text { unrolling the part of } \nabla_{\theta} V^{\pi}(.) \\
& =\sum_{x \in \mathcal{S}} \sum_{k=0}^{\infty} \rho^{\pi}(s \rightarrow x, k) \phi(x) .
\end{aligned}
$$

Continuous State and Action Space IV

The nice rewriting above allows us to exclude the derivative of Q-value function $\nabla_{\theta} Q^{\pi}(s, a)$.

$$
\begin{align*}
\nabla_{\theta} J(\theta) & =\nabla_{\theta} V^{\pi}\left(s_{0}\right) \tag{160}\\
& =\sum_{s} \sum_{k=0}^{\infty} \rho^{\pi}\left(s_{0} \rightarrow s, k\right) \phi(s) \tag{161}\\
& =\sum_{s} \eta(s) \phi(s) \tag{162}\\
& =\left(\sum_{s} \eta(s)\right) \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s) \tag{163}\\
& \propto \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s) \tag{164}\\
& =\sum_{s} d^{\pi}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \tag{165}
\end{align*}
$$

In the episodic case, the constant of proportionality $\left(\sum_{s} \eta(s)\right)$ is the average length of an episode.

Continuous State and Action Space V

$$
\begin{gather*}
\nabla_{\theta} J(\theta) \quad \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a \mid s) \tag{166}\\
=\sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a \mid s) Q^{\pi}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(a \mid s)}{\pi_{\theta}(a \mid s)} \tag{167}\\
=\mathbb{E}_{\pi}\left[Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \tag{168}
\end{gather*}
$$

where \mathbb{E}_{π} refrers to $\mathbb{E}_{s \sim d_{\pi}, a \sim \pi_{\theta}}$ when both state and action distributions follow the policy π_{θ} (on policy).

The policy gradient theorem lays the theoretical foundation for various policy gradient algorithms. This vanilla policy gradient update has no bias but high variance. Many following algorithms were proposed to reduce the variance while keeping the bias unchanged.

$$
\begin{equation*}
\nabla_{\theta} J(\theta)=\mathbb{E}_{\pi}\left[Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a \mid s)\right] \tag{169}
\end{equation*}
$$

Genetic Algorithms

Genetic Algorithms I

Genetic algorithms apply the principles derived from Darwin's principles (natural selection):

- Individuals in population compete for resources.
- Fittest individuals mate to create more offsprings than others.
- Fittest parent propagates genes through generation; parents may produce offsprings better than either parent.
- Generation are coupled to the environment.

The objective is to maintains the population of n individuals along with their fitness scores. Hence, central to genetic algorithms are the notions of population and the fitness function. Each iteration generates from an initial population a new one. There are three operators operating on the individuals from the population:

- Selection

Individuals with better fitness scores pass genes on to successive generations.

- Crossover

The selection operator is applied to select two individuals, and randomly choose crossover sites to exchange the genes at these sites.

Genetic Algorithms II

- Mutation

Insert random genes in offsprings to maintain diversity.
The operation is assumed to be applied to genes, often represented by a sequence from an alphabet Σ :

ADEAGEF

```
Algorithm 12 Generic Genetic Algorithm
    Generate the initial population
    Compute fitness
    repeat
    4: Selection
    5: Crossover
    6: Mutation
    7: Compute fitness
    8: until population has converged
```


Genetic Algorithms III

Let us look at the survival probability of individual i wit fitness f_{i}. One possibility is

$$
\begin{equation*}
P_{i}=\frac{f_{i}}{\sum_{i} f_{i}} . \tag{170}
\end{equation*}
$$

Genetic algorithms have the following advantages:

- No gradients are required
- Can be parallelized
- Can optimize continuous as well as discrete functions
- Can be applied to multi-objective problems

Genetic Algorithm: Example

```
# Source: https://www.geeksforgeeks.org/genetic-algorithms/
# Python3 program to create target string, starting from
# random string using Genetic Algorithm
import random
# Number of individuals in each generation
POPULATION_SIZE = 100
# Valid genes
GENES = ,', abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP
QRSTUVWXYZ 1234567890, . - ;:_!"#%&/() =?@${[]}, , ,
# Target string to be generated
TARGET = "I love GeeksforGeeks"
class Individual(object):
    ,,,
    Class representing individual in population
    ,,,
```


Genetic Algorithm: Example

```
def __init__(self, chromosome):
```

def __init__(self, chromosome):
self.chromosome = chromosome
self.chromosome = chromosome
self.fitness = self.cal_fitness()
self.fitness = self.cal_fitness()
@classmethod
def mutated_genes(self):
,,,
create random genes for mutation
,,,
global GENES
gene = random.choice(GENES)
return gene
@classmethod
def create_gnome(self):
,,
create chromosome or string of genes
,, ,
global TARGET
gnome_len = len(TARGET)

```

\section*{Genetic Algorithm: Example}


\section*{Genetic Algorithm: Example}
```


gene from parent 2

elif prob < 0.90:
child_chromosome.append(gp2)

otherwise insert random gene(mutate),

for maintaining diversity

else:
child_chromosome.append(self.mutated_genes())
\# create new Individual(offspring) using
\# generated chromosome for offspring
return Individual(child_chromosome)
def cal_fitness(self):
,,,
Calculate fittness score, it is the number of
characters in string which differ from target
string.
,,,
global TARGET

```

\section*{Genetic Algorithm: Example}
```

fitness = 0

```
fitness = 0
for gs, gt in zip(self.chromosome, TARGET):
for gs, gt in zip(self.chromosome, TARGET):
    if gs != gt: fitness+= 1
    if gs != gt: fitness+= 1
    return fitness
    return fitness
# Driver code
def main():
    global POPULATION_SIZE
    #current generation
    generation = 1
    found = False
    population = []
    # create initial population
    for _ in range(POPULATION_SIZE):
    gnome = Individual.create_gnome()
    population.append(Individual(gnome))
```


Genetic Algorithm: Example

```
while not found:
# sort the population in increasing order of fitness score
population = sorted(population, key = lambda x:x.fitness)
# if the individual having lowest fitness score ie.
# O then we know that we have reached to the target
# and break the loop
if population[0].fitness <= 0:
        found = True
        break
# Otherwise generate new offsprings for new generation
new_generation = []
# Perform Elitism, that mean 10% of fittest population
# goes to the next generation
s = int((10*POPULATION_SIZE)/100)
new_generation.extend(population[:s])
```


Genetic Algorithm: Example

Genetic Algorithm: Example

```
    format(generation,
    "".join(population[0].chromosome),
    population[0].fitness))
    if __name__ == '__main__':
    main()
```


Excercises

Excercises I

Exercise 1: Single Layer Perceptron

Consider a simple perceptron (see Figure): what will the output be when the input is $(0,0)$? What about inputs $(0,1),(1,1)$ and $(1,0)$? What if we change the bias weight to -0.5 ?

Excercises II

Exercise 2: Basis Functions

Given a test vector x_{i}, the output of a neural network is defined as

$$
\begin{equation*}
f\left(x_{i}\right)=\sum_{j=0}^{M} w_{j} \phi_{j}\left(x_{i}, v_{j}\right) . \tag{171}
\end{equation*}
$$

The weights of the neurons can be learned by employing the back-propagation rule with sample-based gradient descent. In the lecture neural networks with sigmoid neurons have been introduced, but it is possible to employ different basis functions:

- Which properties do these basis functions have to fulfill?
- Is the number of parameters for $\phi\left(x_{i}, v_{j}\right)$ limited? Could several different basis functions be used for the same neural network?

Exercise 3: Error Convergence

Given 2-1 network trained with one single pattern by means of back-propagation of error and learning rate $\eta=0.1$. Let the pattern (p, t) be defined by $p=(p 1, p 2)=(0.3,0.7)$. Verify whether the error

$$
\begin{equation*}
E=\frac{1}{2}(t-y)^{2} \tag{172}
\end{equation*}
$$

converges and if so, at what value?

Bibliography

Bibliography I

References

[1] Maxwell W. Libbrecht and William Stafford Noble. Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6):321-332, 2015.
[2] Andrey Kan. Machine learning applications in cell image analysis. Immunology \& Cell Biology, 95(6):525-530, 2020/02/24 2017.
[3] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Improved protein structure prediction using potentials from deep learning. Nature, 577(7792):706-710, 2020.
[4] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145-151, 1999.
[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv e-prints, page arXiv:1412.6980, 122014.

Bibliography II

[6] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv e-prints, page arXiv:1603.04467, 032016.
[7] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
[8] Frank Rosenblat. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, 1962.
[9] Marvin Minsky and Seymour A. Papert. Perceptrons: An introduction to Computational Geometry. MIT Press, 1969.
[10] Proc. Nat. Acad. Sci. 79 2554-2558 J. J. Hopfield. 1982. 1982.
[11] J. Reinitz E. Mjolsness, D. H. Sharp. J. Theor. Biol., 152:429-453, 1991.
[12] Mechanisms of Development 49 133-158 J. Reinitz, D. H. Sharp. 1995. 1995.

Bibliography III

[13] M. Kaufman R. Thomas, D. Thieffry. Bul. Math. Biol., 57(2):247-276, 1995.
[14] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and David Haussler. Hidden markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235(5):1501-1531, 1994.
[15] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3):229-256, 1992.
[16] R. S. Sutton and A. G. Barto. Reinforcement Learning : An Introduction. Cambridge, MA, USA: MIT Press, 1998.
[17] Schulman J. Wolski F. Dhariwal P. Radford A. and Klimov O. Proximal policy optimization algorithms. In International Conference on Learning Representations, 2017.
[18] Razvan V. Florian. Correct equations for the dynamics of the cart-pole system. Technical report, 2020.
[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
[20] https://arxiv.org/abs/1506.02438, 2018.

Index

Index I

ϵ-greedy strategy, 116
cumulative discounted return, 69
action policy, 69
action-state function, 69, 110
Actor-Critic policy gradient algorithm, 114
Adaptive Moment Estimation (Adam), 15
advantage function, 110
advantage, reinforcement learning, 70
ANN, 17
backpropagation, 24
Baum-Welch algorithm, 63
Bellman Equation, 91
classification, neural network, 32
continuous state and action space, 131

Index II

CpG, 48
crossover, genetic algorithm, 137
curse of dimensionality, 132
decoding problem, 56
deep learning, 13
discount parameter, 69
environment, fully observable, 11
episode, reinforcement learning, 73
evaluation problem, 56
excitatory synapses, 19
expectation maximization (EM) algorithm, 63
fitness function, 137
forward algorithm, hidden Markov model, 57
forward-backward algorithm, hidden Markov model, 63
gradient descent, 13

Index III

gradient descent optimization algorithms, 15
Hadamard product, 24
HMM, hidden Markov model, 44
horizon, reinforcement learning, 67
inhibitory synapses, 19
learning problem, 56
learning rate, 80
learning rate schedule, 13
logistic function, 20
Markov chain, 131
Markov chain, reinforcement learning, 67
Markov Decision Process, MDP, 8
Markov reward process, MRP, 9
mini-batch gradient descent, 14
Monte Carlo policy gradient, 81

Index IV

Monte-Carlo, Policy Evaluation, 81
Monte-Carlo, Policy Evaluation with Neural Network, 92
multiple sequence alignments, 54
mutation, genetic algorithm, 138
n-gram Models, 61
natural selection, 137
Neural Networks, 17
neural networks, artificial, 17
perceptron, 18
play out, reinforcement learning, 73
policy gradient, 68
policy, reinforcement learning, 66
population, genetic algorithm, 137
Q-Learning, 112
REINFORCE, 81

Index V

reinforcement learning, 65
return, reinforcement learning, 65
reward function, 9, 70
reward, reinforcement learning, 65
Schur product, 24
selection, genetic algorithm, 137
SGD, with momentum, 15
sigmoid neuron, 19
Smith-Waterman algorithm, 54
softmax, 72
state space, 9
stochastic gradient descent, 13
stochastic gradient policy theorem, 73
tensorflow, 15
value function fitting, 118

Index VI

value-state function, 69, 110
values policy, 69
Viterbi algorithm, 59
weighted input, 25

