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Introduction and Overview I

Consider the canonical ensemble average of an observable A(~x), where ~x stands
symbolically for the “microstate” coordinate in the configurational part of the
phase space of the system, are given by

〈A(~x)〉T =
1
Z

∫
d~x exp[−H(~x/kBT ]A(~x) , (1)

where H(~x) is the Hamiltonian of the considered many-particle system, and with
kB = Boltzmann’s constant, T = absolute temperature, and Z being the
partition function which is related to the free energy F ,

Z =

∫
d~x exp[−H(~x)/kBT ] , F = −kBT lnZ . (2)

By simple sampling Monte Carlo the integrals over the (very high-dimensional!)
space

∫
d~x ... in Eqs.1,2 are replaced by sums over a sample of M randomly

chosen points {~x1, ~x2, . . . , ~xM}, but we have seen that simple sampling works only
if the number N of the particles (or degrees of freedom, such as Ising or
Heisenberg spins) is extremely small.
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Introduction and Overview II

We have introduced the Importance Sampling Monte Carlo method, where the
points {~xν} no longer are chosen completely at random, but preferentially from
the important region of configuration space. Namely, choosing a state ~xν with a
probability proportional to the Boltzmann factor exp(−H(~xν)/kBT ), the average
in Eq.1 is simply replaced by an arithmetic average over the M states generated:

〈A(~x〉T ≈ A(~x) =
1
M

M∑
i=1

A(~xi ) . (3)

We have seen that the Importance Sampling Monte Carlo method is very
powerful, it allows a very large number of useful applications. However, when we
compare Eqs.1 and 3, we see that some important information has been lost:
Eq.3 has as a normalizing denominator no longer the partition function Z {Eq.2},
but rather simply the total number M of generated configurations.

In fact, doing Importance Sampling Monte Carlo the knowledge of Z and hence
F , as well as of the entropy S (remember F = E - T S where the internal energy
E is accessible as a thermal average of the Hamiltonian, of course, E = 〈H(~x〉T )
has been lost.
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Introduction and Overview III

When we study (in the thermodynamic limit, N →∞) the free energy per spin
F/N of the Potts ferromagnet as a function of temperature (in zero field H), we
observe that for temperatures T less than the transition temperature Tc the free
energy of the (q-fold degenerate) ordered phase is lower than that of the
(metastable) continuation of the free energy branch of the (nondegenerate)
disordered phase, while for T > Tc the disordered branch has the lower free
energy.

At Tc , the two branches Ford(T ), Fdis(T ) are precisely equal, but the two
branches meet there under different angles. Since we know from elementary
thermodynamics that (β ≡ 1/kBT )

E = (∂F/∂β)H = −kBT 2(
∂F

∂T
)H , (4)

the slopes ∂Ford/∂T |T , ∂Fdis/∂T |T simply are related to the energies E−,E+,
E+ − E− being the latent heat at the first order transition.
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Introduction and Overview IV

So one would like to know the free energies of the ordered and disordered phases
Ford(T ),Fdis(T ) explicitly, since then the transition simply could be located from
the condition Ford(Tc ) = Fdis(Tc ). The “poor man’s recipe” to achieve this has
been based on a method called “thermodynamic integration” (6.1; 6.2). From
Eq.4 we readily recognize that free energy differences can be computed from

∆F ≡ F2 − F1 =

β2∫
β1

E(β)dβ =

β2∫
β1

〈H〉βdβ . (5)

In order to carry out the integral in Eq.5 numerically with sufficient accuracy, one
needs to compute 〈H〉β at a large number of inverse temperatures β intermediate
between β1 and β2 (and this need may be cumbersome: that’s why we call this
approach a “poor man’s recipe”).

In order to get an absolute free energy, one needs to know the free energy F1 of a
reference state. For the Potts ferromagnet in the disordered phase, a convenient
reference state is the completely random state at β1 = 0, where E(0) = 0 and
S(β = 0) = NkB ln q is trivially known.

For the ordered phase, a similarly simple reference state would be β2 →∞, where
the system is fully ordered, E coincides with the ground state energy, and
S = kB ln q (without a factor N: we just have a q-fold degenerate ground state).
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Introduction and Overview V

In practice it suffices to choose a large but finite β2 as a reference state, for
which the deviation of E(β2) from the ground state energy is negligibly small.

Although we have called this thermodynamic integration approach a “poor man’s
recipe”, one should not be misled: there are cases where this simple-minded
approach actually is the method of choice, superior in accuracy to both finite size
scaling approaches and the sampling techniques that we shall describe in the
present chapter.

Even though thermodynamic integration can (at least in favorable cases) yield
information on the free energies of the two phases that coexist at the transition,
it does not yield any information on the barrier between these phases in
configuration space. This free energy barrier is responsible for the hysteresis that
very often is observed in simulations and also in experiments!) near first-order
transitions.

In many contexts, it is of great interest to gain information on a suitable path in
a (suitably coarse-grained) “free energy landscape” that connects the free energy
minima that correspond to the coexisting phases with each other.

When one discusses H(~x) as a function of the configuration space coordinate ~x
one may speak of a “potential energy landscape”, but clearly the considered space
is extremely high-dimensional, and the landscape in this space is presumably
extremely “rugged”. As always in statistical physics, one is more interested in a
reduced description, referred to as “coarse-graining” above.
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Introduction and Overview VI

The most familiar concept of coarse-graining uses the idea of an “order
parameter” as introduced by Landau (6.1).

In simple cases, like Ising ferromagnets or fluids that undergo a vapor-liquid phase
transition, this order parameter is a scalar quantity (the magnetization 〈m〉T ,H
per spin in the case of a ferromagnet, or the density ρ = 〈N〉T /V in the case of a
fluid occupying a volume V ).

Rather than discussing the full canonic or grandcanonic probability distribution

pcan(~x) = (1/Z) exp[−H(~x)/kBT ]

or

pg,c (~x) = (1/Y ) exp[(µN −H(~x))/kBT ] , (6)

where Y (T ,V , µ) =
∑
N
exp(µN/kBT )ZN(T ,V ) is the grand-canonical partition

function and µ the chemical potential, one focusses attention to a reduced
description, e.g. in terms of the distribution p(ρ) of the density only,

p(ρ) = (1/Y )
∑
N

∫
d~x exp[(µN −H(~x))/kBT ]δ(ρ− N/V ) . (7)

Note that p(ρ) can be interpreted in terms of a free energy f (ρ) per unit volume
as
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Introduction and Overview VII

p(ρ) = (1/Y ) exp[−Vf (ρ)/kBT ] (8)

Fig.1 presents a plot of f (ρ) vs. ρ for a Lennard-Jones model of a fluid at a
temperature T = 0.68Tc and choosing the chemical potential µ such that in the
bulk (volume V = L3 →∞) coexistence between vapor and liquid occurs,
µ = µcoex(T ) (6.7; 6.8).
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Introduction and Overview VIII

Figure: Free energy per unit volume f (ρ) plotted vs. density ρ, for a Lennard-Jones
model of a fluid (the potential being truncated at rc = 2.21/6σ, with the Lennard-Jones
parameter σ being the unit of length, and shifted to zero there). The data refer to three
choices of cubic L × L × L simulation boxes, with periodic boundary conditions, a
temperature T = 0.68Tc , and the chemical potential being chosen at two-phase
coexistence, µ = µcoex, so the two minima are equally deep. Insert shows a blow-up of
the region near the bulk gas density at coexistence, ρg .
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Introduction and Overview IX

These data have been obtained by the technique of “successive umbrella
sampling” (6.9), that will be described in the following section.

Figure: Plot of the reduced chemical potential difference βµ̂ vs. ρ, for the system with
L = 15.8σ from Fig. 6.1. Typical snapshot pictures of system configurations illustrate the
evolution of the system from homogeneous vapor to homogeneous liquid via a sequence
of inhomogenous states when one crosses the free energy barrier of Fig. 1 when ρ is
increased. For further explanations cf. text.
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Introduction and Overview X

Figure: Schematic picture of a “rugged free energy landscape”, plotted as a function of
two order parameter coordinates ψx , ψy . The two white lines indicate two possible
trajectories from the region of one deep minimum to another one. From Dellago et al.
(6.28)
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Introduction and Overview XI

Such “rugged free energy landscapes” (6.29) occur in such diverse systems as
domain patterns in random ferromagnets, diluted magnets with competing
interactions (“spin glasses” (6.30), undercooled fluids near the glass transition
(6.31), and polymers (in particular proteins) under bad solvent conditions
(6.32; 6.33; 6.34; 6.35; 6.36; 6.37; 6.38; 6.39; 6.40).

In all these systems the step analoguous to the step from Eqs.6 to Eq. 8 for the
simple fluid, where one focuses on a reduced description in terms of a simple
“order parameter”, is not at all straightforward.

In models for spin glasses, this problem has been circumvented by studying two
“real replica”, copies of the same system with a specific choice of random
exchange interactions, and defining an order parameter q as the (normalized)
projection of the spin configurations in the replicas (1), (2) onto each other,

q = (1/N)
N∑
i=1

S
(1)
i S

(2)
i (in the case of Ising spins, S(α)

i = ±1) (6.30; 6.31).

The sampling of the distribution P(q), analogous to the distribution P(ρ) in
Eqs. (7), (8), nevertheless is a challenging computational problem, since in
addition to the thermal averaging (with the Boltzmann factor, cf. Eq. (7)) there
is the need to carry out an average [· · · ]av over the quenched disorder: i.e., the
distribution P{Jij}(q) obtained for one particular choice {Jij} of the random
bonds needs to be averaged over (typically) several hundred realizations of such
random bond configurations (6.30; 6.41; 6.42; 6.43; 6.44; 6.45; 6.46).
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Introduction and Overview XII

Given a rugged free energy landscape as schematically shown in Fig. 3, it is a
nontrivial question which path the system will take in order to reach equilibrium.
In order to describe the kinetics of such thermally activated processes in complex
free energy landscapes, a Monte Carlo sampling over an ensemble of trajectories
of such processes is desirable, and this can be achieved by the “transition path
sampling”-technique (6.28; 6.77; 6.78; 6.79; 6.80; 6.81; 6.82; 6.83) and its
variants to sample rare events (“string method”, “metadynamics”, etc.)
(6.84; 6.85; 6.86; 6.87; 6.88; 6.89; 6.90). As Bolhuis et al. (6.80) put it,
transition path sampling can be viewed as “throwing ropes over mountain passes
in the dark”.

Of course, the sampling of trajectories of processes requiring thermal activation
such as crossing barriers in nucleation events via Monte Carlo methods has its
sound theoretical basis in the dynamic interpretation of Monte Carlo sampling
(6.91). In fact, the first Monte Carlo simulation studies of nucleation processes in
the nearest-neighbor kinetic Ising model were performed decades ago (6.92; 6.93).

However, this naive (i.e., unbiased) sampling of trajectories over free energy
barriers is efficient only if these barriers are not higher than a few kBT . Via
transition path sampling one creates trajectories that are biased such that higher
free energy barriers (of the order of 20 to 100 kBT ) are crossed, and thus very
valuable insight into the kinetics of nucleation processes (e.g. (6.94)) can be
gained.
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Umbrella Sampling I

We now return to the problem of calculating free energy differences between two
states 1,2, but we now assume these systems have different Hamiltonians H1(~x),
H2(~x). From Eq. (2) we can immediately derive that

∆F = F2 − F1 = −kBT ln(Z2/Z1) = −kBT ln
(∫ d~x exp[−βH2(~x)]∫

d~x exp[−βH1(~x)]

)
. (9)

We first use Eq. 9 to justify the “overlapping distribution method” (6.96).

Suppose that we carry out an importance sampling study of system 2. For every
configuration space point ~x that is generated in the resulting Markov chain we can
compute also the potential energy H1(~x) of system 1 (we focus here on the case
that both systems have exactly the same volume V and same particle number N).

We then can obtain the probability of ∆E = H2(~x)−H1(~x) as

p2(∆E) = (1/Z2)

∫
d~x exp[−βH2(~x)]δ[H2(~x)−H1(~x)−∆E ] . (10)
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Umbrella Sampling II

Due to the delta function, Eq. (10) can be rewritten as

p2(∆E) = (1/Z2) exp(−β∆E)

∫
d~x exp[−βH1(~x)]δ[H2(~x)−H1(~x)−∆E ]

= (Z1/Z2) exp(−β∆E)p1(∆E) (11)

In full analogy to Eq. 10, p1(∆E) is the probability density of finding a potential
energy density ∆E between systems 1 and 2, when one samples the states of the
system 1.

Using Eq. 9, we obtain

ln p2(∆E) = β(∆F −∆E) + ln p1(∆E) . (12)

From Eq. (12) we see that the two functions ln p2(∆E), ln p1(∆E)− β∆E
should be identical, apart from a constant offset β∆F .

Thus, if there exists a range of ∆E where the two distributions ln p2(∆E),
ln p1(∆E)− β∆E have sufficient overlap, one can obtain β∆F from a best fit.

Of course, in practice this method can work only if the two systems differ only
very little (e.g., two Ising systems at slightly different values of the magnetic field
H).
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Umbrella Sampling III

Another consequence of Eq. (11) is seen when one integrates this equation over
∆E from −∞ to +∞. Since p2 is normalized to unity, this yields

1 = exp(β∆F )

+∞∫
−∞

d∆E exp(−β∆E)p1(∆E) = exp(β∆F )〈exp(−β∆E)〉1

i.e.

exp(−β∆F ) = 〈exp{−β(H2(~x)−H1(~x))}〉1 (13)

Here 〈· · · 〉1 means that averages are taken in a sampling with system 1. Again
Eq. (13) is practically useful if the two systems 1,2 differ only very little.

The idea of “umbrella sampling” (6.47; 6.48) now is to enhance the overlap
between the distributions p1(∆E) exp(−β∆E), p2(∆E) by carrying out a biased
sampling with a suitable chosen weight function Π(~x).
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Umbrella Sampling IV

Biased sampling is derived by rewriting Eq. (1) as follows

〈A(~x)〉0 =

∫
d~xΠ(~x) exp[−βH0(~x)]A(~x)/Π(~x)

∫
d~xΠ(~x) exp[−βH0(~x)]/ Π(~x)

= 〈A(~x)/Π(x)〉0,Π/〈1/Π(~x)〉0,Π , (14)

where the index Π at 〈· · · 〉0,Π is a reminder that the weight contains an
additional factor Π(~x) in the statistical weight for the states ~x , in addition to the
Boltzmann factor.

We use this to rewrite Eq. (13) as follows

〈exp{−β[H2(~x)−H1(~x)]}〉1 =

∫
d~xΠ(~x) exp[−βH2(~x)]/Π(~x)∫
d~xΠ(~x) exp[−βH1(~x)]/Π(~x)

= 〈exp[−βH2(~x)]/Π(~x)〉Π/〈exp[−βH1(~x)]/Π(~x)]〉Π . (15)

Here Eq. (14) is used for the special case H0(~x) = 0.

In order to be able to sample both the numerator and the denominatur with
acceptable accuracy, the “bridging distribution” Π(~x) must have sufficient overlap
with both the important regions of configuration space of systems 1 and 2.

This bridging property of Π(~x) is responsible for the name umbrella sampling.
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Umbrella Sampling V

In practice, it is often advantageous to work not only with a single bridging
distribution Π(~x), but with many distributions intermediate between
1
Z1

exp[−βH1(~x)] and 1
Z2

exp[−βH2(~x)].

Suppose there exists a parameter ∆ψ that distinguishes between H2 and H1.

Then it often is useful to divide the interval ∆ψ in n steps ∆ψ/n.

The optimum choice of n, however, in the general case is a subtle matter (6.95).

Another important drawback is that the function Π(~x) is not know a priori, it
must be guessed, using the knowledge on the Boltzmann weights of the systems
1 and 2.

However, there are situations where the implementation of the method is rather
straightforward.

One such scheme is the technique of Virnau and Müller (6.9) termed “successive
umbrella sampling”, to which we turn now.

This method has the advantage that by extrapolation of results from one
“window‘” to the next (adjacent) window one can estimate the weight function
rather simply, and one also can obtain rather reliable error estimates for this
procedure.

This algorithm has been used for the study of liquid-vapor transitions (6.25; 6.27)
and of liquid-liquid phase separation (6.26; 6.97).
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Umbrella Sampling VI

For simplicity, we follow (6.9) using the language appropriate for a liquid-vapor
transition, and simply take the number of particles N as the order parameter.

We are interested in the distribution P(N) for a given choice of variables V ,T
and µ in the grandcanonical ensemble, at temperatures T distinctly lower than
the critical temperature.

Then P(N) has two peaks, one for particle numbers close to Nv = Vρv and
another close to N` = Vρ`, where ρv , ρ` are the densities of coexisting vapor and
liquid in the thermodynamics limit, provided µ is close to µcoex, and in between
Nv , N` there occurs a region with a deep minimum {precisely at µcoex we know
that P(N) ∝ exp[−Vf (ρ)/kBT ], with f (ρ) shown in Fig. 1, for example}.

However, to sample the distribution efficiently it is better to sample the
re-weighted distribution Psim(N)

Psim(N) = P(N) exp[−w(N)] (16)

where in the optimum case w(N) = lnP(N), because then Psim(N) would be
perfectly flat.

We note that this is the same idea as used in multicanonical sampling (see Sec.
6.3.) and Wang-Landau sampling (see Sec. 6.4), of course.

However, P(N) initially is completely unknown.
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Umbrella Sampling VII

The strategy (6.9) now is to divide the region of all particle numbers from N = 0
to some N = Nmax into m overlapping windows of width ω, and investigate one
small window after the other.

A histogram HK (N) monitors how often each state N is visited in the window
[kω, (k + 1)ω],

We denote the values of the k’th histogram at its left and right boundary by
Hk` ≡ Hk (kω), Hkr ≡ Hk [(k + 1)ω], and define the ratio rk as

rk = Hkr/Hk` . (17)

After a predetermined number of Monte Carlo steps per window, the
(unnormalized) probability distribution is estimated recursively

P(N)/P(0) = (H0r/H0`)(H1r/H1`) · · · (Hk (N)/Hk`) = Πk−1
i=1 ri (Hk (N)/Hk`)

(18)
with N ∈ [kω, (k + 1)ω]. Probability ratios in this equation correspond to free
energy differences.

Care is needed at the boundaries of a window to fulfill detailed balance: if a move
attempts to leave the window, it is rejected, and the previous state is counted
once more for the histogram.
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Umbrella Sampling VIII

The number of Monte Carlo steps (count of insertion or deletion trials) is not
increased, however, as these moves neither contribute to the statistics.

As one samples one window after the other, a weighted simulation amounts to
replace Hk (N) by Hk (N) exp[(wk (N)], and the weight function wk (N) is
estimated by extrapolation: After P(N) has been estimated, w(N) is extrapolated
quadratically into the next window.

The first window is usually unweighted.
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Multicanonical Sampling I

Let us consider the problem of thermally driven first order transitions, as they
occur for instance in the case of the well-know q-state Potts model (6.98).

The probability distribution PL(E) of the internal energy in a simulation using
lattices of size L× L(d = 2) or L× L× L (d=3 dimensions) in the transition
region has two rather sharp peaks, separated by a deep minimum in between.

When the peaks have equal weight (6.99; 6.100) (“equal weight rule”) the
transition from the ordered phase (stable for T < Tc ) to the disordered phase
(stable for T > Tc ) occurs, giving rise to a rather sharp peak in the specific heat,
that develops into a delta function (representing the latent heat of the transition)
as L→∞.

It is very difficult to obtain accurate date on this specific heat peak by naive
Monte Carlo sampling, because for large L the transitions between the two peaks
of P(E) occur very rarely, but it is necessary to sample many such transitions to
estimate the relative weights for these peaks.

Using a single histogram reweighting (6.101) and multiple histogram reweighting
(6.102) the accuracy can be significantly improved, since Monte Carlo data
yielding a distribution PL(E) for one inverse temperature β can be reweighted to
neighboring temperatures in an interval ∆β ∝ 1/

√
N (where N = Ld here).

Nevertheless, if the sampled distribution has a double-peak structure, the problem
of estimating correctly the relative weights of the peaks remains.
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Multicanonical Sampling II

The multicanonical Monte Carlo method (6.49; 6.50; 6.51; 6.52; 6.53; 6.54)
addresses this problem noting that

PL(E) = gL(E) exp(−βE) (19)

and suggesting to choose a reweighting with the weight function

wmuca(E) ∝ 1/gL(E) for Emin ≤ E ≤ Emax , (20)

where the interval [Emin,Emax] is the range of energies of interest for the
considered transition.

Of course, if gL(E) were known, the problem would be solved, the specific heat
could be calculated from gL(E) analytically, no Monte Carlo sampling would be
required.

But gL(E) is not known, one can only try to find a “working approximation”
(6.103) of the weight function wmuca(E).

After such a function has been constructed, one performs an actual Monte Carlo
simulation with this function, to obtain a final estimate of gL(E).

Then one can use Eq. (19) to obtain averages at the desired values β of interest.
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Multicanonical Sampling III

The drawback of multicanonical Monte Carlo is that finding a suitable
approximate weight function is not straightforward (note that the problem is
essentially the same as in standard umbrella sampling: this is no surprise at all,
since multicanonical Monte Carlo can be viewed as a reformulation of umbrella
sampling (6.64; 6.95; 6.103)).

For systems with rugged free energy landscapes, finite size scaling methods for
estimating weight factors wmuca(E) often do not work; e.g., for biomolecules one
particular size is only of interest, or for spin glasses, the weights change too much
when the system size is increased.

If one does not want to rely on “ad hoc per hand estimates” (6.103), one must
try to use a systematic recursive method (6.103; 6.104; 6.105).
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Multicanonical Sampling IV

Writing the weight of state α as

w(α) = exp[−b(Eα)Eα + a(Eα)] ≡ [−S(Eα)] , (21)

where S can be interpreted as the associated entropy, and assuming that the
energy spectrum is discrete (step size ε), one can derive a recursion (6.54)

bn+1(E) = bn(E) + ĝn(E)[lnHn(E + ε)− lnHn(E)]/ε (22)

ĝn(E) = gn(E)/[hn(E) + gn(E)] , (23)

gn(E) = Hn(E + ε)Hn(E)/[Hn(E + ε) + Hn(E)] , (24)

hn+1(E) = hn(E) + gn(E), h0(E) = 0 , (25)

Hn(E) being the histogram entry at the n’th step of the recursion.

A much more straightforward sampling strategy is to create an extended
ensemble, which is known as “parallel tempering” or “replica exchange Monte
Carlo” (6.65; 6.66; 6.68).

One performs a set of m canonical Monte Carlo simulations at different values
βi ,· · · i = 0, · · · m − 1, with β0 < β1 < · · · < βm−2 < βm−1.
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Multicanonical Sampling V

For these runs standard Boltzmann weight factors exp[−βiH(~x] are used.

From time to time one attempts to exchange neighboring β values,

βi → βi−1, βi−1 → βi , i = 1, · · · , n − 1 (26)

at fixed configuration of the systems, just treating the exchange in Eq. (26) as an
additional type of Monte Carlo move, which is subjected to the standard
importance sampling acceptance criterion.

Of course, the set of values {βi} has to be chosen such that a reasonably large
acceptance rate results.

Obviously, this requires that the distributions PL(E) for βi and βi−1 have a
strong overlap.

Thus, the number m of neighboring temperatures must scale like m ∝
√
N as

N →∞, but nevertheless the method is useful, particularly for systems such as
glasses and spin glasses (6.29; 6.31; 6.41; 6.42; 6.43; 6.44; 6.45; 6.46).
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Wang-Landau Sampling I

The Wang-Landau algorithm (6.56; 6.57; 6.58; 6.59; 6.60; 6.61; 6.62; 6.63) is an
elegant iteration method to construct directly the energy density of states, g(E).

The idea is to perform a random walk in energy space with a flat histogram.

One can also generalize this method to other variables (e.g. sample for an Ising
ferromagnet g(E ,M) where M is the magnetization), but such generalizations
will not be considered here.

Unlike histogram methods where one extracts estimates of g(E) from probability
distributions generated by standard Monte Carlo simulations, temperature plays
no role in this algorithm at all!

Transitions between microstates (e.g., spin flips in an Ising model) are carried out
according to probability

p(E → E ′) = min{g(E)/g(E ′), 1} (27)

If g(E) where known in beforehand, a Markov process based on Eq. (27) would
generate a flat histogram.

Since g(E) is not known in before hand, an iteration process needs to be
performed to construct g(E), starting from a simple initial guess.

In the absence of any a priori knowledge on g(E), it is natural to choose as an
initial density of states simply g(E) = 1, for all E .
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Wang-Landau Sampling II

For simplicity, we restrict here attention to a case where the energy spectrum is
discrete and bounded (Emin ≤ E ≤ Emax), as it is the case for an Ising model or
a lattice model for a polymer chain, but we emphasize at the outset that such a
restriction is not necessary, and many successful applications of Wang-Landau
sampling to off-lattice models (like fluids or polymer chains with Lennard-Jones
interactions) have been given (6.61).

Since the actual g(E) is very different from g(E) ≡ 1, it is necessary to have a
procedure that leads quickly away from this initial condition.

This is achieved by replacing g(E) b g(E) times f , where the initial guess of the
modification factor f1 is f1 = e1, whenever a state with energy E is visited.

During this random walk in energy space controlled by Eq. (27), one accumulates
a histogram H(E); i.e. starting out with H(E) = 0 for all E , one replaces H(E)
by H(E) + 1 whenever E is visited.

The moves that are carried out to realize Eq. (27) are just the standard moves
that one also would use in a standard Monte Carlo simulation that attempts to
sample the Boltzmann distribution (e.g., spin flips of an Ising model, random
displacements of an effective monomer to a new position in a model for a
polymer chain, etc.)

This sampling process of the histogram is continued, until the histogram H(E) is
“reasonably flat”.
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Wang-Landau Sampling III

In practice, it has turned out that a useful criterion for this “flatness” is to require
that the minimum entry in the histogram is not smaller than 80% of its mean
value (6.56; 6.57; 6.58).

When in the first iteration step this flatness has been achieved, one resets all
histogram entries H(E) to zero, and performs a sampling with a modification
factor f2 =

√
f1 (and in the i’th step, one chooses fi =

√
fi−1).

Otherwise the procedure is identical to the procedure followed in the first step.

This procedure is iterated, until fi reaches a minimum value, which in practice is
chosen to be of order fmin ≈ exp(10−8).

While the detailed balance principle clearly is violated in the early stages of the
iteration, this is no problem in the final run.

The final density of states g(E) then is used to calculate averages, e.g. the
specific heat

C(T ) = (〈E2〉T − 〈E〉2T )/(kBT
2) (28)

where moments 〈E k 〉 are straightforwardly computed from g(E) as

〈E k 〉 =
∑
E

E kg(E) exp(−βE)/
∑
E

g(E) exp(−βE) . (29)

30 / 46



Wang-Landau Sampling IV

Of course, it is possible to use the run with the final choice fmin to obtain more
detailed information.

E.g., in the study of Ising models one would like to estimate moments of the
magnetization distribution 〈mk 〉T .
Sampling of the full (two-dimensional) joint density of states g(E ,m) would solve
this problem, but for large systems this would require a huge computational effort.

Typically it is sufficient (and much easier) to only take “microcanonical” averages,
〈|m|k 〉E , from which then the desired canonical averages follow,

〈|m|k 〉T =
∑
E

〈|m|k 〉E g(E) exp(−βE)/
∑
E

g(E) exp(−βE) , k = 1, 2, 3, · · · .

(30)
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Transition Path Sampling I

Here we return to the problem already alluded to in Fig. 3. Suppose the system is
stable or metastable in the basin near the starting points (white dots) of the two
trajectories, i.e. typically it will stay there for a very long time.

Only very rarely it will follow a path over high saddle points in a complex free
energy landscape to make a transition into another deep basin (arrows).

The aim of transition path sampling then is to gain information on all probable
path ways, in order to analyze the transition mechanism. E.g., in the context of
chemical reactions one would like to identify the “reaction coordinate” (6.77); in
the case of crystal nucleation from the melt, one wants to get information on the
crystal, structure size, and shape of the nucleus that forms (6.110); etc.

This “reaction coordinate” need not be a scalar, but may contain several
variables: e.g., in nucleation from an un-mixing binary fluid mixture one expects
that both the size of the droplet and its composition change during the growth of
the droplet from subcritical to supercritical.

Since the pathways collected with transition path sampling are trajectories
consistent with the Markovian master equation description of Monte Carlo
sampling, the full information on the kinetics of the transition can be extracted
(6.83).

Transition path sampling can be adapted to cases where the underlying dynamic
simulation method is not Monte Carlo but Molecular Dynamics or Brownian
Dynamics (6.83).
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Transition Path Sampling II

However, also in these cases the weight of the trajectories in the “transition path
ensemble ” is obtained by Monte Carlo methods.

The idea is to carry out a random walk in the space of trajectories rather than in
configuration space.

The basic step generates a new path {~x(n)({t})} from an old one {~x(0)({t})}.
The underlying dynamics of the system that is simulated defines a “path
ensemble” PAB{~x({(t)}} where we denote the initial state as A and the final
state as B.

The initial condition is prepared by placing the system in a heat bath at
temperature T , and hence the distribution of initial conditions is just the
standard canonical distribution, but some variable is constrained so that the state
point falls in the region of one minimum in the free energy landscape (Fig. 3)
where all trajectories start.

In order that all trajectories are compatible with the path ensemble, one
introduces a transition probability p[{~x(0)(t)} → {~x(n)(t)}] that satisfies the
detailed balance condition with PAB{~x({(t)})},

PAB{~x(0)({t})}p[{~x(0)(t)}]→ {~x(n)(t)}] =

= PAB{~x(n)({t})}p[{~x(n)(t)} → {~x(0)(t)}] . (31)
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Transition Path Sampling III

The transition between individual states (at one time t of the Markov process,
~x(0)(t)→ ~x(n)(t)) hence is replaced by a transition between two full trajectories,
such as shown in Fig. 3.

This probability p then can again be written as a product of a “generation
probability” of a new path and an “acceptance probability”, and from Eq. (31) one
then readily can postulate a Metropolis importance sampling rule.

Of course, the subtle problem is the generation of new paths with a reasonably
high acceptance probability.

To solve this problem, one mostly relies on the so-called “shooting algorithm”
(6.28).

For this purpose the path is divided into many small time slices.

From the randomly selected time slice t′, one carries out a move to a new state,
~x(t′)→ ~x ′(t′) according to the rules of the underlying dynamics.

From the new state ~x ′(t′) forward trajectories (that end up in B) and backward
trajectories (that end up in A) are generated, so that one can glue one forward
and one backward trajectory together to get a new full trajectory going from A to
B.

This new trajectory eventually is accepted (or rejected), depending on the
Metropolis test based on Eq. (31).
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Transition Path Sampling IV

Of course, in order to be able to start such a sampling, an initial trajectory must
be available.

Just as in ordinary Monte Carlo sampling, where the initial state does not need to
be similar to the states characteristic for the final thermal equilibrium, e.g. one
can start the simulation of an Ising ferromagnet always from a perfectly ordered
spin configuration irrespective of the temperature of the simulation, one can start
transition path sampling from a completely atypical trajectory, and then try to
relax the system to converge towards the dominating trajectories.

Of course, it depends on the model chosen whether such an approach is
practically feasible or not (and also the task of finding an initial trajectory is a
nontrivial task!).

A useful concept in transition path sampling is the “committor distribution”. It is
defined as the fraction of trajectories started in A and going via a state ~r to reach
the state B after a time t (6.83)

PB(~r , t) ≡
∫
D~x(t′)P({~x(t′)})δ(~r0 − ~r)hB(~x(t))∫
D~x(t′)P({~x(t′)})δ(~r0 − ~r)

(32)

Here hB(~x) = 1 if x ∈ B and zero else, paths that start at time t = 0 at ~r = ~r0
but do not end up at time t in the region B are not included in the numerator,
while they are included in the denominator.
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Transition Path Sampling V

Thus the committor distribution is a statistical measure for “how committed is a
given configuration to reach the “product state” B” (6.83). In an practical
simulation, only a finite sample of N trajectories started at t = 0 at a point ~r in
configuration space is available, and then Eq. (32) can be written simply as

pB(~r , t) ≈
1
N

N∑
i=1

hB(~xi (t)) . (33)

Analogously one can define pA(~r , t), and a formal definition of the “transition
state ensemble” then becomes (6.28; 6.77; 6.78; 6.79; 6.80; 6.81; 6.82; 6.83)

pA(~r) = pB(~r) (34)

where we also have invoked a time-independent form of the committor (counting
all events that first reach A or first reach B, irrespective how long it has taken).

While transition path sampling is rather straightforward to implement in the
example of nucleation in the kinetic Ising model (Fig. ??), where one has a
qualitative insight into the kinetics of the process and the nature of transition
states a priori, there are problems where no such knowledge is available, e.g. in
the folding process of complex off-lattice models for proteins (6.34).
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Transition Path Sampling VI

In such cases, it is useful to combine then the transition path sampling with
complementary sampling strategies to obtain information on the free energy
landscape, e.g. the replica exchange method, that has been mentioned in Sec.
6.3 (6.34). Since at the time of writing “for large proteins the computational
effort due to both system size anf long time scales beocmes prohibitive” (6.34),
this subject will remain an area of further research.

37 / 46



References I

[6.1] L. D. Landau, E. M. Lifshitz: Statistical Physics, 3rd Ed. (Pergamon Press,
Oxford, 1980)

[6.2] K. Binder: Z. Phys. B45, 61 (1981)

[6.3] S. Kämmerer, B. Dünweg, K. Binder, M. D’Onorio De Meo: Phys. Rev. B53,
2345 (1996)

[6.4] W. Schweika, D. P. Landau, K. Binder: Phys. Rev. B53, 8937 (1996)

[6.5] F. F. Haas, F. Schmid, K. Binder: Phys. Rev. B61, 15077 (2000)

[6.6] R. Lipowsky: J. Appl. Phys. 55, 2485 (1984)

[6.7] M. Schrader: Diplomarbeit (Johannes-Gutenberg-Universität Mainz, 2009,
unpublished)

[6.8] M. Schrader, P. Virnau, K. Binder: In preparation

[6.9] P. Virnau, M. Müller: J. Chem. Phys. 120, 10925 (2004)

[6.10] L. G. Mac Dowell, P. Virnau, M. Müller, K. Binder: J. Chem. Phys. 120, 5293
(2004)

[6.11] L. G. Mac Dowell, V. K. Shen, J. R. Errington: J. Chem. Phys. 125, 034705
(2006)

[6.12] M. Müller, J. J. de Pablo: In Computer Simulations in Condensed Matter:
From Materials to Chemical Biology, Vol. 1, ed. by M. Ferrario, G. Ciccotti, K.
Binder (Springer, Berlin-Heidelberg-New York 2006) p. 67

38 / 46



References II

[6.13] H. Furukawa, K. Binder: Phys. Rev. A 26, 556 (1982)

[6.14] B. A. Berg, U. Hansmann, T. Neuhaus: Z. Phys. B90, 229 (1993)

[6.15] J. E. Hunter, W. P. Reinhardt: J. Chem. Phys. 103, 8627 (1995)

[6.16] K. Binder, M. H. Kalos: J. Stat. Phys. 22, 363 (1980)

[6.17] M. Biskup, L. Chayes, R. Kotecky: Europhys. Lett. 60, 21 (2002)

[6.18] K. Binder, Physica A 319, 99 (2003)

[6.19] E. A. Carlen, M. C. Carvalho, R. Esposito, J. L. Lebowitz, R. Marra: Molec.
Phys. 103, 3141 (2005)

[6.20] P. Virnau, M. Müller, L. G. Mac Dowell, K. Binder: New J. Phys. 6, 7 (2004)
[http://stacks.iop.org/1367-2630/6/7]

[6.21] K. Binder: Phys. Rev. A25, 1699 (1982)

[6.22] K. Binder, M. Müller, W. Oed: J. Chem. Soc., Faraday Trans. 91, 2369 (1995)

[6.23] M. Müller, M. Schick: J. Chem. Phys. 105, 8885 (1996)

[6.24] M. Müller, L. G. Mac Dowell: Macromolecules 33, 3902 (2000)

[6.25] P. Virnau, M. Müller, L. G. Mac Dowell, K. Binder: J. Chem. Phys. 121, 2169
(2004)

[6.26] R. L. C. Vink, J. Horbach, K. Binder: Phys. Rev. E71, 011401 (2005)

[6.27] B. M. Mognetti, L. Yelash, P. Virnau, W. Paul, K. Binder, M. Müller, L. G.
Mac Dowell: J. Chem. Phys. 128, 104501 (2008)

39 / 46



References III

[6.28] C. Dellago, P. G. Bolhuis, P. L. Geissler: Adv. Chem. Phys. 123, 1 (2002)

[6.29] W. Janke (ed.): Rugged Free Energy Landscapes: Common Computational
Approaches to Spin Glasses, Structural Glasses and Biological Macromolecules
Lect. Notes in Physics 736 (Springer, Berlin-Heidelberg-New York, 2008)

[6.30] K. Binder, A. P. Young: Rev. Mod. Phys. 58, 801 (1986)

[6.31] K. Binder, W. Kob: Glassy Materials and Disordered Solids. An Introduction to
Their Statistical Mechanics (Singapore, World Scientific, 2005)

[6.32] U. H. E. Hansmann, Y. Okamoto: In Annual Reviews in Computational
Physics VI edited by D. Stauffer (World Scientific, Singapore, 1999), p. 129

[6.33] Y. Sugita, Y. Okamoto, In Lecture Notes in Computational Science and
Engineering edited by T. Schlick, H. H. Gan (Springer, Berlin-Heidelberg-New
York, 2002) p. 304

[6.34] P. G. Bolhuis: In Computer Simulations in Condensed Matter: From Materials
to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder (Springer
Berlin-Heidelberg-New York, 2006) p. 393

[6.35] M. Bachmann, W. Janke: in (6.29), p. 203

[6.36] A. Irbäck: in (6.29), p. 269

[6.37] U. H. E. Hansmann: in (6.29), p. 293

[6.38] Y. Sugita, A. Mitsutake, Y. Okamoto: in (6.29), p. 369.

40 / 46



References IV

[6.39] J. Luettmer-Strathmann, F. Rampf, W. Paul, K. Binder: J. Chem. Phys. 128,
064903 (2008)

[6.40] K. Binder, W. Paul, T. Strauch, F. Rampf, V. Ivanov, J.
Luettmer-Strathmann: J. Phys.: Cond. Matter 20, 494215 (2008)

[6.41] A. P. Young (ed.): Spin Glasses and Random Fields (World Scientific,
Singapore, 1998)

[6.42] A. P. Young: in Computer Simulations in Condensed Matter Systems: From
Materials to Chemical Biology, Vol 2, Lect. Notes in Phys. 704, edited by M.
Ferrario, G. Ciccotti and K. Binder (Springer, Berlin-Heidelberg-New York,
2006) p. 31.

[6.43] A. Billoire: in (6.29), p.11

[6.44] K. Binder, C. Brangian, W. Kob: in (6.29), p. 47

[6.45] T. Aspelmeier, A. Billoire, E. Marinari, M. A. Moore: J. Phys. A: Math. Theor.
41 324008 (2008)

[6.46] A. P. Young,: J. Phys. A: Math. Theor. 41, 324016 (2008)

[6.47] G. M. Torrie, J. P. Valleau: Chem. Phys. Lett. 28, 578 (1974)

[6.48] G. M. Torrie, J. P. Valleau: J. Comp. Phys. 23, 187 (1977)

[6.49] B. A. Berg, T. Neuhaus: Phys. Lett. B267, 249 (1991)

[6.50] B. A. Berg, T. Neuhaus: Phys. Rev. Lett 68, 9 (1992)

41 / 46



References V

[6.51] B. A. Berg: Int. J. Mod. Phys. C4, 249 (1993)

[6.52] W. Janke: Physica A254, 164 (1998)

[6.53] B. A. Berg: Comp. Phys. Commun. 153, 397 (2003)

[6.54] B. A. Berg: Markov Chain Monte Carlo Simulations and Their Statistical
Analysis (World Scientific, Singapore, 2004)

[6.55] M. Bachmann, W. Janke: J. Chem. Phys. 120, 6779 (2004)

[6.56] F. Wang, D. P. Landau: Phys. Rev. Lett. 86, 2050 (2001)

[6.57] F. Wang, D. P. Landau: Phys. Rev. E64, 056101 (2001)

[6.58] D. P. Landau, F. Wang: Comput. Phys. Commun. 147, 674 (2002)

[6.59] B. J. Schulz, K. Binder, M. Müller, D. P: Landau: Phys. Rev. E67, 067102
(2003)

[6.60] S. Trebst, D. A. Huse, M. Troyer: Phys. Rev. E70, 046701 (2004)

[6.61] D. P. Landau, K. Binder: A Guide to Monte Carlo Simulation in Statistical
Physics 3rd ed. (Cambridge Univ. Press, Cambridge, 2009)

[6.62] C. Zhou, R. N. Bhatt: Phys. Rev. E72, 025701 (2005)

[6.63] D. P. Landau: in (6.29), p. 353

[6.64] N. B. Wilding: In Computer Simulations in Condensed Matter: From Materials
to Chemical Biology, Vol 1, Lect. Notes in Phys. 703, edited by M. Ferrario, G.
Ciccotti, and K. Binder (Springer, Berlin-Heidelberg-New York, 2006) p. 39

42 / 46



References VI

[6.65] A. P. Lyubartsev, A. A. Matsinovski, S. V. Shevkunov, P. N.
Vorontsov-Velyaminov: J. Chem. Phys. 96, 1776 (1992)

[6.66] E. Marinari, G. Parisi: Europhys. Lett. 19, 451 (1992)

[6.67] J. Lee: Phys. Rev. Lett. 71, 211 (1993); Erratum ibid. 71, 2353 (1993)

[6.68] K. Hukushima, H. Takayama and K. Nemoto: Int. Mod. Phys. C3, 337 (1996)

[6.69] P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Braz. J. Phys. 26, 677
(1996)

[6.70] P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Eur. Phys. J. B1, 205
(1998)

[6.71] J. S. Wang, L. W. Lee: Comput. Phys. Commun. 127, 131 (2000)

[6.72] Y. Iba: Int. J. Mod. Phys. C12, 623 (2001)

[6.73] Q. Yan, F. Faller, J. J. de Pablo: J. Chem. Phys. 116, 8745 (2002)

[6.74] J. S. Wang, R. H. Swendsen: J. Stat. Phys. 106, 245 (2002)

[6.75] I. Carmesin, K. Kremer: Macromolecues 21, 2819 (1988)

[6.76] H. P. Deutsch, K. Binder: J. Chem. Phys. 94, 2294 (1991)

[6.77] C. Dellago, P. G. Bolhuis, F. S. Csajka, D. Chandler: J. Chem. Phys. 108,
1964 (1998)

[6.78] C. Dellago, P. G. Bolhuis, D. Chandler: J. Chem. Phys. 108, 9236 (1998)

[6.79] P. G. Bolhuis, C. Dellago, D. Chandler: Faraday Discuss. 110, 421 (1998)

43 / 46



References VII

[6.80] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler: Ann. Rev. Phys.
Chem. 53, 291 (2002)

[6.81] C. Dellago, D. Chandler: In Bridging Time Scales: Molecular Simulation for
the Next Decade edited by P. Nielaba, M. Mareschal, and G. Ciccotti
(Springer, Berlin-Heidelberg-New York, 2002)

[6.82] C. Dellago: In Handbook of Materials Modeling, edited by S. Yip (Springer,
Berlin-Heidelberg-New York, 2005) p. 1585

[6.83] C. Dellago, P. G. Bolhuis, P. L. Geissler: In Computer Simulations in
Condensed Matter. From Materials to Chemical Biology, Vol 1. edited by M.
Ferrario, G. Ciccotti, and K. Binder (Springer, Berlin-Heidelberg-New York,
2006), p. 349

[6.84] W. E., W. Ren, E. Vanden-Eijnden: Phys. Rev. B66, 05301 (2002)

[6.85] A. Laio. M. Parrinello: Proc. Nath. Acad. Sci. USA 99, 12562 (2002)

[6.86] R. Elber, A. Ghosh, A. Gardenas, H. Stern: Adv. Chem. Phys. 126, 93 (2004)

[6.87] C. Micheletti, A. Laio, M. Parrinello: Phys. Rev. Lett. 92, 170601 (2004)

[6.88] E. Weinan, W. Ren, E. Vanden-Eijnden: J. Phys. Chem. B109, 6688 (2005)

[6.89] G. Bussi. A. Laio, M. Parrinello: Phys. Rev. Lett. 96, 090601 (2006)

[6.90] A. Laio, M. Parrinello: In Computer Simulations in Condensed Matter: From
Materials to Chemical Biology, Vol. 1, edited by M. Ferrario, G. Cicotti, and K.
Binder (Springer, Berlin-Heidelberg-New York, 2006) p. 315

44 / 46



References VIII

[6.91] H. Müller-Krumbhaar, K. Binder: J. Stat. Phys. 8, 1(1973)
[6.92] K. Binder, H. Müller-Krumbhaar: Phys. Rev. B9, 2328 (1974)

[6.93] K. Binder, D. Stauffer: Advanc. Phys. 25, 343 (1976)

[6.94] A. C. Pan, D. Chandler: J. Phys. Chem. B108, 19681 (2004)

[6.95] D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to
Applications. 2nded. (Academic Press, San Diego, 2002)

[6.96] C. H. Bennett: J. Comp. Phys. 22, 245 (1976)

[6.97] B. M. Mognetti, P. Virnau, L. Yelash, W. Paul, K. Binder, M. Müller, L. G.
MacDowell: J. Chem. Phys. (2009, in press)

[6.98] F.Y. Wu: Rev. Mod. Phys. 54, 235 (1982)

[6.99] K. Binder, D. P. Landau: Phys. Rev. B30, 1477 (1984)

[6.100] C. Borgs, R. Kotecky: J. Stat. Phys. 61, 79 (1990)

[6.101] A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 61, 2635 (1988)

[6.102] A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 63, 1195 (1989)

[6.103] B. A. Berg: In (6.29), p. 317

[6.104] B. A. Berg: J. Stat Phys. 82, 323 (1996)

[6.105] B. A. Berg, A. Billoire, W. Janke: Phys. Rev. E61, 12143 (2000)

[6.106] B. J. Schulz, K. Binder, M. Müller: Phys. Rev. E71, 046705 (2005)

45 / 46



References IX

[6.107] A. M. Ferrenberg, D. P. Landau, K. Binder: Phys. Rev. E58, 3353 (1998)

[6.108] K. Vollmayr, J. D. Reger, M. Scheucher, K. Binder: Z. Phys. B: (Condens.
Matter 91, 113 (1993)

[6.109] T. Neuhaus, S. Hager: J. Stat.Phys. 113, 47 (2003)

[6.110] D. Moroni, P. R. ten Wolde, P. G. Bolhuis: Phys. Rev. Lett. 94, 235703 (2005)

[6.111] A. C. Zettelmoyer: Nucleation (Marcel Dekker, New York, 1969)

[6.112] Z. W. Salsburg, J. D. Jacobson, W. S. Fickett, W. W. Wood: J. Chem. Phys.
30, 65 (1959)

[6.113] S.-H. Tsai, F. Wang, D. P. Landau; H.-Q. Lin: Phys. Rev. E75, 061108 (2007)

[6.114] Z. Chen, Y. Gu: J. Bioinformatics and Comput. Biol. 4, 317 (2006)

[6.115] E. Luijten, H. W. J. Blöte: Int. J. Mod. Phys. C6, 359 (1995)

[6.116] J. Lui, E. Luijten: Phys. Rev. E71, 066701 (2005)

[6.117] Y. C. Kim, M. E. Fisher: Phys. Rev. E68, 041506 (2003)

[6.118] J. C. Grossman: J. Chem. Phys. 117, 1434 (2002)

[6.119] M. Nekovee. W. M. C. Foulkes, R. J. Needs: Math. Comput. Simulat. 62, 463
(2003)

[6.120] W. Schattke, R. Bahnsen, R. Redmer: Progr. Surf. Sci. 72, 87 (2003)

[6.121] S.-I. Lui, J. Chem. Phys. 121, 10365 (2004)

46 / 46


	Introduction and Overview
	Umbrella Sampling
	Multicanonical Sampling and other ``extended ensemble'' methods
	Wang-Landau Sampling
	Transition Path Sampling

