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What does this mean if we calculate the time average of an observable A, which
by necessity can cover only a finite observation time?

Let us consider the statistical error for n successive observations Ai , i = 1, ..., n:

〈
(δA)2

〉
=

〈[
n−1

n∑
i=1

(Ai − 〈A〉)2
]〉

. (1)

In terms of the autocorrelation function for the observable A

φA(t) =
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
(2)

We define two characteristic correlation times.
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Exponential autocorrelation time
Typically we expect that (asymptotically, for large t) one gets an exponential
behavior

ΦA(t) ∝ exp
(
−

t

τA,exp

)
(3)

We do expect, though, that the complete expression involves a sum over several
such terms; here we consider only the asymptotically most leading term with largest
autocorrelation time.

Integrated autocorrelation time

τ intA =

∫ ∞
0

φA(t)dt . (4)
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We can rewrite the statistical error as〈
(δA)2

〉
∼=

2τA
nδt

[〈
A2〉− 〈A〉2] , (5)

where δt is the time between observations, i.e., nδt is the total observation time
τobs.

We notice that the error does not depend on the spacing between the
observations but on the total observation time.

Also the error is not the one which one would find if all observations were
independent.

The error is enhanced by the characteristic (integral) correlation time between
configurations.

Only an increase in the sample size and/or a reduction in the characteristic
correlation time τA can reduce the error.
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Critical Slowing Down

Problem: Critical Slowing Down
For local dynamics, the autocorrelation between successively generated
configurations varies with the linear system size L as

τ ∝ Lz (6)

with the dynamical critical exponent z 6= 0, while for those with non-local dynamics
z = 0, i.e., a logarithmic behaviour can occur
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In the thermodynamic limit one finds for the intrinsic relaxation time: τ

τ ∼ ξz ∼ (1− τ/τc )−νz

(Rule ξ ↔ L)

⇒ τmax ∼ Lz (T = Tc )

< (δM)2 > =
2τmax

tobs

[
< M2 >Tc − < |M| >

2
Tc

]
=

2τmaxχ
,
maxkBTc

tobsLα
∼ Lz+γ/ν−d/tobs

since Lz+γ/ν ≈ Ly (d ≤ 4) we have:
To raise the precision by a factor of 10 we need 10y more computing time.
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Spatial Averaging

Now that we know how the statistical error for an observable A depends on the
finite observation time, we can ask for the dependence on the finite system size.
For this we define

∆(n, L) =

√(
〈A2〉L − 〈A〉

2
L

)
/n . (7)

Here L is the linear dimension of the system. Note that we write < . >L for the
average. This is meant as the average with respect to the finite system size. How
does this error depend on L.

L

L
b

b
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Recall that for thermodynamic equilibrium, for a system of infinite size one
observation suffices to obtain A.

In other words, if L→∞ then ∆(n, L) must go to zero, regardless of n. Or, if we
increase the system size then the effective number of observations should increase.

Let L be the system size and L′ the new one which we obtain by a scale factor b
with b > 1 : L′ = bL.

The number of effective observations will change to n′ = b−dn where d is the
dimensionality.
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More formally we can express the idea by

∆(n, L) = ∆(n′, L′) = ∆(b−dn, bL) (8)

We can work out this expression using the definition of ∆ and find〈
A2〉

L
− 〈A〉2L ∝ L−x , 0 ≤ x ≤ d . (9)

In the case where x = d we call the observable A strongly self-averaging and in
the cases 0 < x < d , weakly self-averaging.

As we increase L, b tends to a finite value, independent of L.
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