
Monte Carlo Methods
Random Numbers

Dieter W. Heermann

Heidelberg University

November 8, 2020

1 / 26

Table of Contents

1. Introduction
2. Generators based on Recursion

Linear Congruential Generators
Inverse Congruential Generators
Add-with-Carry/Subtract-with-Carry
Generators

Fibonacci Generators
3. Non-Uniform Distributions
4. The Accept/Reject Method
5. Testing Random Numbers
6. Literature

2 / 26

Introduction I

Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.
John Von Neumann, 1951

3 / 26

Intuitively, we can list a number of criteria that a sequence of numbers must fulfill to
pass as a random number sequence:

unpredictability,

independence,

without pattern.

These criteria appear to be the minimum request for an algorithm to produce random
numbers. More precisely we can formulate:

uniform distribution,

uncorrelated,

passes every test of randomness,

large period before the sequence repeats (see later),

sequence repeatable and possibility to vary starting values,

fast algorithm.

4 / 26

Generators based on Recursion I

The most common generators use very basic operations and apply them repeatedly on
the numbers generated in previous steps. We formulate this as a recursion relation

xi+1 = G(xi), x0 = initial value , (1)

where we have made explicit only the dependence on the immediate predecessor. The
most important representatives of this class of generators are the

linear congruential,

lagged Fibonacci,

shift-register or a

combination of linear congruential.

5 / 26

Linear Congruential Generators I

A very simple generator is constructed using the modulo function.

G(x) = (xa+ b) mod M (2)

This function produces a dilatation, translation and a folding back into the interval.
Random number generators based on this function are called linear congruential
generators or LCG(a,b,M) for short. If we assume integers as the set on which the
modulo function is defined, then for example, the range of integer numbers for a
32-bit architecture is at most M = 231 − 1. Here we assume that one bit is taken for
the sign of the number. Then the numbers range at most from 0 to M − 1. Of course,
we can map these onto the real interval between 0 and 1, recognizing that this is an
approximation to the real-valued random numbers.

6 / 26

Inverse Congruential Generators I

A very simple generator is constructed using the modulo function.

xn+1 = (x−1
n a+ b) mod M , (3)

where x−1
n is the multiplicative inverse of xn in the integers modm with 0−1 defined

as 0.

7 / 26

The choice of the parameters a, b and M determine the statistical properties and
how many different numbers we can expect before the sequence repeats itself.

The period can be shown to be maximal, if M is chosen to be a prime number.
Then the whole range of numbers occurs.

Here we only consider modulo generators with b = 0.

Such generators are called multiplicative and the short form MLCG(a,M) is used
for such generators.

These are the most commonly used, since one can show that additive generators,
i.e. generators with b in general non zero have undesirable statistical properties.

The choices for the parameter a are manifold. For example a = 16807,
630360016 or 397204094 are possible choices with M = 231 − 1.

8 / 26

Page 1 of 1MOD.C
Printed For: Heermann

/*-- */
/* Modulo Generator */
/*-- */
int ModGenerator(modul,multi,inc,seed,max_sweeps,x)
 int modul;
 int multi;
 int inc;
 int seed;
 int max_sweeps;
 float *x;
{
 /*-- */
 /* Declarations */
 /*-- */
 int i;
 double r;
 double factor, increment, modulus;
 /*-- */
 /* End of declares */
 /*-- */

 r = (double) seed;
 factor = (double) multi;
 increment = (double) inc;
 modulus = (double) modul;

 for(i=0; i< max_sweeps; i++) {
 r=fmod(r*factor + increment,modulus);
 x[i] = (float) r / modulus;
 }
 return 0;
}

9 / 26

In C/C++:
Page 1 of 1ranf.c

#include <stdlib.h>
int iseed, randInt;
float randFloat;

srand(iseed);
randInt = rand();
randFloat = (float) randInt / (float) RAND MAX;

10 / 26

Add-with-Carry/Subtract-with-Carry Generators I

Add-with-carry and subtract-with-carry generators rely on two numbers, the carry
c and the modular base M.

Add-with-carry generator;

xn+1 = (xn−s + xn−r + c) mod M (4)

Subtract-with-carry

xn+1 = (xn−s − xn−r − c) mod M (5)

Problems:
Require an initial seed of a sufficiently long sequence.
Pairs (or triplets) of terms fall on planes (see modulo generator).

11 / 26

Fibonacci Generators I

The lagged Fibonacci generator, symbolically denoted by LF(p,q,⊗) with p > q, is
based on a Fibonacci sequence of numbers with respect to an operation which we
have given the generic symbol ⊗.
Let S be the model set for the operation ⊗, for example the positive real numbers, the
positive integers, or the set S = {0, 1}. The binary operation ⊗ computes a new
number from previously generated numbers with a lag p

xn = xn−p ⊗ xn−q , p > q . (6)

To start the generator we need p numbers. These can be generated using for example
a modulo generator. The advantage of the lagged Fibonacci generator, apart from
removing some of the deficiencies that are build into the modulo type generators, is
that one can operate on the level of numbers or on the level of bits.

12 / 26

Page 1 of 1FIBO.C
Printed For: Heermann

 for(i=0; i< max_sweeps; i++) {
 mf[p] = mf[p] + mf[q];
 if (mf[p] > 1) mf[p] -= 1;
 x[i] = mf[p];
 if (++p == lagP-1) p = 0;
 if (++q == lagP-1) q = 0;
 }

13 / 26

In the following I have listed some lagged Fibonacci generators:

Recursion Relation Period
xi = xi−17 − xi−5 mod (2n) (217 − 1)2n−1

xi = xi−17 + xi−5 mod 2n (217 − 1)2n−1

xi = xi−31 − xi−13 mod 2n (231 − 1)2n−1

xi = xi−55 − xi−24 224(297 − 1) with 24 Bit Mantissa

14 / 26

Example: The shift bit register generator R250
Page 1 of 2R250.C

Printed For: Heermann

include <math.h>
define RAND_MAX 2147483647

/*==*/
/* */
/* Random Number Generator: R 2 5 0 */
/* */
/* program version 1.0 for C */
/* Dieter W. Heermann */
/* may 1990 */
/*==*/

int init_r250(seed, m_f_ptr)
 int seed;
 int *m_f_ptr;
 {

 int i,tmp, dummy, one ;
 int *start;

 start = m_f_ptr;
 srand(seed);
 one = 1;

 /* warm up the usual random number generator */
 for (i=0; i< 100; i++)
 {dummy = rand();
 }

 /* now draw the 250 (251)initial bit sequences */
 for (i=0 ; i<251; i++)
 {*m_f_ptr++ = rand();
 }

 /* now orthogonalize as best as we can */
 m_f_ptr = start;
 for (i=0; i < 30; i++)
 { tmp = *m_f_ptr;

 *m_f_ptr = tmp | one;

 one = one << 1;

 m_f_ptr++;
 }

 return 0;
 }

int r250 (n, x_ptr, m_f_ptr, save)
 int n;
 float *x_ptr;
 int *m_f_ptr;
 int save;
 {

 int ind ;
 int j, min,k,ll;
 float *ran_ptr;

 ind = save;
 ll = n + 250;
 ran_ptr = x_ptr;
 j = 1;

For example, we can construct a
generalized shift-register generator
GFSR(p,q,⊗), where the operation is
interpreted as the exclusive or, which
acts on every of the 32 bits in a
computer word. This generator is also
known under the name of R250.
(Follow this link to access the code for
the R250.c.)

15 / 26

http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C
http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C

Non Uniform Distributions I

Let us turn now to the generation of non-uniform distributions. First we look at
the normal or Gaussian distribution.

Typically algorithms generating non-uniform variates do so by converting uniform
variates.

In its most straightforward form a normal deviate x with mean < x > and
standard deviation σ is produced as follows:

Let n be an integer, determined by the needed accuracy. Then
sum n uniform random numbers ri from the interval (−1, 1):

sn =
n∑

i=1
ri

and let x =< x > +σsn
√

3.0/n .

16 / 26

Let G(x) be a function on the interval [a, b] with 0 < G(x) < 1 and f (x) the
probability distribution f (x) = a exp [−G(x)], where a is a constant.

1: Generate r from a uniform distribution on (0, 1)
2: Set x = a+ (b − a)r
3: Calculate t = G(x)
4: Generate r1, r2, ..., rk from a uniform distribution on (0, 1) (k is determined

from the condition t > r1 > r2 > ... > rk−1 < rk)
5: if t < r1 then
6: k = 1
7: end if
8: if k is even then
9: reject x and go to 1

10: else
11: x is a sample
12: end if

17 / 26

An interesting method for generating normal variates is the polar method. It has
the advantage that two independent, normally distributed variates are produced
with practically no additional cost in computer time.

1: Generate two independent random variables, U1,U2 from the interval (0, 1).
2: Set V1 = 2U1 − 1, V2 = 2U2 − 1
3: Compute| S = V 2

1 + V 2
2

4: if S ≥ 1 then
5: return to step 1
6: else
7: x1 = V1

√
−2 ln S/S

8: x2 = V2
√
−2 ln S/S

9: end if

18 / 26

-4 -2 0 2
r

0

1000

2000

3000

4000

co
un

t

n = 100

Polar Method

-4 -2 0 2
r

0

50

100

150

200

co
un

t
n = 100

Polar Method

19 / 26

The Accept/Reject Method I

Another idea of converting one distribution into another is to accept or reject
drawn number for an initial distribution such that the accepted numbers have the
desired distribution.

Assume that we are given a uniform random number generator U ∼ (0, 1) and
X ∼ g .

We want to generate Y ∼ f .

Assume that there exists a constant c such that f (x) < cg(x) for all x .
1: Generate X ∼ g
2: Generate U ∼ (0, 1)
3: if U ≤ f (X)/cg(X) then
4: Y = X
5: else
6: Goto 1
7: end if

20 / 26

To proof that this is correct we show that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y) .

Note that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y)

P(U ≤ f (X)/cg(X))
=

∫ y
−∞

∫ f (x)/cg(x)
0 g(x)dudx∫∞

−∞
∫ f (x)/cg(x)
0 g(x)dudx

which simplifies to ∫ y

−∞
f (x)dx .

21 / 26

Testing Random Numbers I

A number of statistical tests have been devised to check for the properties of
random number generators. To name just a few prominent tests

χ2,
Kolmogorov-Smirnov,
correlation,
run and
visual test.

The statistical tests are tests how well the empirical distribution, i.e., the
generated sequence, fits a test distribution. For example, the simple frequency
test χ2 is a test that virtually all random number generators will pass.

22 / 26

The run test tests whether an empirical distribution has monotone decreasing or
increasing subsequences and confronts these with the expectation for their
occurrence.

Let us assume that we want to test for monotone increasing subsequences. Such
a test is called a run test up, otherwise run test down.

A run of length r of a sequence x = (x1, ..., xn) is a maximal strictly
monotonically increasing (decreasing) subsequence (xi , ..., xi+r−1), i.e.,

xi−1 > xi < ... < xi+r−1 > xi+r (7)

with x0 positive infinite and xn+1 negative infinite.

23 / 26

The expectation for the distribution of runs is derived from a simple permutation
argument and will not be reproduced here.

For large n, one can show, that the probability to get a run of length r is given by
r/(r + 1)!, hence

1/2, 1/3, 1/8, 1/30, 1/144, (8)

The way the test is derived shows that this tests for correlation in the generated
sequence.

The expected probabilities for the sequences reflect the independence from
correlation.

24 / 26

A very easy test is the lattice test.

Suppose we have to visit the sites of a simple cubic lattice L3 at random.

The three coordinates are obtained from three successively generated random
numbers r1, r2, r3 ∈ (0, 1), as

1: ix = rz ∗ L+ 1
2: iy = rz ∗ L+ 1
3: iz = rz ∗ L+ 1

where ix , iy , iz are integer variables, implying a conversion of the real right-hand
sides to integers, i.e., removal of the fractional part.

If there are no correlations between successively generated random numbers all
sites will eventually be visited.

However, only certain hyperplanes are visited if correlations exist.

25 / 26

Literature I

F. James, A review of pseudorandom number generators,Computer Physics
Communications 60 (1990) 329-344

G. Marsaglia et al., A random number generator for PC’s, Computer Physics
Communications 60 (1990) 345-349

G. Marsaglia, Random numbers fall mainly in the planes, Proc Natl Acad Sci
USA 1968; 61(1): 252̆01328.

G. Marsaglia et al., Toward a universal random number generator, Stat. Prob.
Lett. 9 (1990) 35

CERN program library CERNLIB: RIWIAD, RADMUL, DIVONNE etc. VEGAS:
G. P. Lepage, Journal of Computational Physics 27 (1978) 192- 203

RAMBO: R. Kleiss et al., Computer Physics Communications 40 (1986) 359-373

26 / 26

	Introduction
	Generators based on Recursion
	Linear Congruential Generators
	Inverse Congruential Generators
	Add-with-Carry/Subtract-with-Carry Generators
	Fibonacci Generators

	Non-Uniform Distributions
	The Accept/Reject Method
	Testing Random Numbers
	Literature

