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@ Perhaps the most straight-forward application of probability and
Monte Carlo simulation can be seen in the random walk model.

@ Problem: A man starts from a point O and walks / yards in a straight
line; he then turns through any angle whatever and walks another/
yards in a second straight line. He repeats this process N times. |
require the probability that after N of these stretches he is at a
distance between r and r + dr. (Nature, 27 July 1905, Karl Pearson).
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@ Lord Rayleigh pointed out the connection between this problem and
an earlier paper of his (Rayleigh) published in 1880 concerned with
sound vibrations. Rayleigh pointed out that, for large values of N, the
answer is given by
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@ 1919-21 the lattice random walk or Polya walk was introduced by
George Polya.
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There are numerous applications:

Applications
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http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Random_walk

One interpretation and use is for polymers:

Polymer Chain — Random Walk
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~RandomWak |
Random Walk
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We assume a lattice. For simplicity we take a simple square lattice.
On this lattice a particle or walker is placed. The walker regards this
initial position as the origin.

The walker draws a random number and decides, according to the
drawn random number, to go to a new position on the lattice.

The new position must be one of the nearest neighbours, and each of
the neighbours has the same probability to be visited.

Once he is at the new position, the walker regards this position as his
new origin. In other words, he immediately forgets where he came
from.

Every step is made as if it is the first step.

All steps are then independent of each other.
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@ |t is assumed that in the array random are stored numbers which are
uniformly distributed in the interval (0, 1).

@ A random number from the array is then multiplied by 4 and
converted to an integer value. This integer value can either be 0,1, 2
or 3 labeling the four possible directions or nearest neighbours on the
square lattice.

@ The numbers 0,1,2 and 3 are uniformly distributed as long as the
numbers in the array random are so distributed. Depending on the
direction the random number points to, the walker occupies the
appropriate position on the lattice by increasing or decreasing the x or
y variable.

@ The variables xn and yn hold the new position of the random walker.
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switch (i)
case 0:

case 1:

case 2:

case 3:

/* ——-- Choose a new nn site —--- */
i = floor(random[index++]* 4.0);

{

xn = x-1;

yn =y;

break;

yn = y-1;

Xn = X;

break;

yn = y+l1;

Xn = X;

break;

Xxn = x+1;

yn = y;

break;

switch i ———= */

} /* ———=
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1D Random Walks
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@ Let us assume that the walker performed N steps. This constitutes
one realization of a random walk.

@ We may now be interested in computing properties of such a walk.
From just one realization we cannot draw any conclusion since the
walk may be atypical. We need to generate many walks, calculate for
every walk the desired property and then average over the results.

@ The point which we want to make is that the generation of the
samples, i.e., all the realizations of random walks are generated
independently. Let A; be the observable property computed for the
i-th realization of a random walk. We define the average, or
expectation value for the observable A, denoted by < A>, as the
arithmetic mean over all A;

1n
A> =S4 . 1
<A> n; (1)
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Self-Avoiding Random Walks
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_ Simple Sampling of Self-Avoiding Random Walks
Simple Sampling of Self-Avoiding Random Walks

while ( sample < sample_size ) {

- Res:

alker to the origin -/

w(01[0]
wiojr1]

y
1
occupanc:

walkit;

return_code = r250( N, ran,mf);

while ( (1 <N) & (occupancy == 0) ) {
d = ran[l] * 4;
switeh (d) {

ase 0t xbe;
break;

case 1: y++;
break;

case 2t x--;
break;

case 3: y--;

, The code can be found here
lilkx<ﬂYHKX"L)HKY<‘7?HYY::L)Y(

if ( glx]ly] < walk ) {
glxly] = walk;

wll[0] = x;

will(1]
occupancy = 0;

)

else

{
occupancy = 1;

{
* —--= we can compute the end-to-end distance etc.

% = xc - wN-11{0];
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http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/saw.c

@ Performing the simple sampling simulation it becomes immediately
evident that we have a problem with the simple sampling technique
for the self-avoiding random walk model.

@ As we increase the number of steps the walker should travel, it
becomes harder and harder to find a walk. In almost all cases the
walk terminates earlier because there is a violation of the self-avoiding
condition! (attrition problem).

@ This shows that the simple sampling, even though being the simplest
and perhaps even most powerful method has clear limitations.
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ey -7 <"ion Alserithm
Reptation Algorithm

: Assume that we have generated a random walk.

: Choose one of the end points at random and delete this point.

: Choose one the end points at random.

: Add the delete point to the choosen end with a random direction.

B W N =
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Pivot Algorithm

@ Let W denote the set of self-avoiding walks of length N on a lattice A.

o Further let G()) be the group of lattice symmetries.

@ The pivot algorithm [1] takes a self-avoiding random walk and pivots
the walk to generate a new walk from the set W such the sequence of
generated walks yields a Markov chain which is aperiodic and
irreducible with uniform stationary distribution .
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@ Let W denote the set of self-avoiding walks of length N on a lattice A.

o Further let G()) be the group of lattice symmetries.

@ The pivot algorithm [1] takes a self-avoiding random walk and pivots
the walk to generate a new walk from the set W such the sequence of
generated walks yields a Markov chain which is aperiodic and
irreducible with uniform stationary distribution 7.
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Pivot Algorithm

1: Start with a self-avoiding walk wg € W.
Next choose an integer i uniformly from the set {0,1,2,..., N — 1}.
The site connected with this index is the pivot site x = w(/).

n

3: Select a lattice symmetry g uniformly from the symmetry group G.
4: Set w(k) = we(k) for k < i, and &(k) = g(we(k)) for k)i.

5. if (@ is self-avoiding then

6: Wiyl = W.

7: else

8  let wir1 = wy.

9:  Goto 2. for the next generation t :=t + 1.

10: end if
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@ The sequence {w;} is aperiodic and irreducible with uniform
stationary distribution 7.

@ The sequence further is reversible

m(wi)P(wi,wj) = m(wj) P(wj,w;) (2)

Since 7 is uniform, we need to show that P is symmetric. Suppose
there are m ways to move, with one pivot, from a self-avoiding walk
w to another self-avoiding walk @. For i = 1,2, ..., m, consider the
pairs (x;, g;). Each pair gives a transition, using the pivot algorithm
from w to @.
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Thus,

m
Plw,@) =) Plg=g) P(x=x) . (3)
i=1
Notice that the pairs (xi,g,._l), for i = 1,2,..., m give one-step transitions
from @ and that P(g = gi) = P(g = gi_l) because g is chosen uniformly.
Therefore
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[A N. Madras and A.D Sokal, The pivot algorithm: a highly ecient Monte
Carlo method for the self-avoiding walk, J. Stat. Phys. 50: 109-186,
(1988)
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