
Random Walks

Dieter W. Heermann

Monte Carlo Methods

2015

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 1 / 1



Outline

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 2 / 1



Introduction

Perhaps the most straight-forward application of probability and
Monte Carlo simulation can be seen in the random walk model.

Problem: A man starts from a point O and walks l yards in a straight
line; he then turns through any angle whatever and walks anotherl
yards in a second straight line. He repeats this process N times. I
require the probability that after N of these stretches he is at a
distance between r and r + δr . (Nature, 27 July 1905, Karl Pearson).

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 3 / 1



Introduction

Lord Rayleigh pointed out the connection between this problem and
an earlier paper of his (Rayleigh) published in 1880 concerned with
sound vibrations. Rayleigh pointed out that, for large values of N, the
answer is given by

2

Nl2
e−r2/Nl2rδr .

1919-21 the lattice random walk or Polya walk was introduced by
George Polya.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 4 / 1



Introduction

There are numerous applications:

29.06.09 14:16Random walk - Wikipedia, the free encyclopedia

Seite 1 von 1file:///Users/heermann/Documents/Institut/Vorlesung/Monte%20Carlo/Course/images/ramdom-walk-wiki.html

Applications
The following are the applications of random walk:

In economics, the "random walk hypothesis" is used to model shares prices and other factors.
Empirical studies found some deviations from this theoretical model, especially in short term and
long term correlations. See share prices.
In population genetics, random walk describes the statistical properties of genetic drift
In physics, random walks are used as simplified models of physical Brownian motion and the
random movement of molecules in liquids and gases. See for example diffusion-limited
aggregation.
In mathematical ecology, random walks are used to describe individual animal movements, to
empirically support processes of biodiffusion, and occasionally to model population dynamics.
Also in physics, random walks and some of the self interacting walks play a role in quantum field
theory.
In polymer physics, random walk describes an ideal chain. It is the simplest model to study
polymers.
In other fields of mathematics, random walk is used to calculate solutions to Laplace's equation, to
estimate the harmonic measure, and for various constructions in analysis and combinatorics.
In computer science, random walks are used to estimate the size of the Web. In the World Wide
Web conference-2006, bar-yossef et al. published their findings and algorithms for the same. (This
was awarded the best paper for the year 2006).

In all these cases, random walk is often substituted for Brownian motion.

In brain research, random walks and reinforced random walks are used to model cascades of
neuron firing in the brain.
In vision science, fixational eye movements are well described by a random walk.
In psychology, random walks explain accurately the relation between the time needed to make a
decision and the probability that a certain decision will be made. (Nosofsky, 1997)
Random walk can be used to sample from a state space which is unknown or very large, for
example to pick a random page off the internet or, for research of working conditions, a random
illegal worker in a given country.
When this last approach is used in computer science it is known as Markov Chain Monte Carlo or
MCMC for short. Often, sampling from some complicated state space also allows one to get a
probabilistic estimate of the space's size. The estimate of the permanent of a large matrix of zeros
and ones was the first major problem tackled using this approach.
In wireless networking, random walk is used to model node movement.
Bacteria engage in a biased random walk.
Random walk is used to model gambling.
In physics, random walks underlying the method of Fermi estimation.
During World War II a random walk was used to model the distance that an escaped prisoner of
war would travel in a given time.

Click here to view
the wikipedia list

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 5 / 1

http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Random_walk


Introduction

One interpretation and use is for polymers:

Polymer Chain Random Walk

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 6 / 1



Random Walk

Random Walk

We assume a lattice. For simplicity we take a simple square lattice.

On this lattice a particle or walker is placed. The walker regards this
initial position as the origin.

The walker draws a random number and decides, according to the
drawn random number, to go to a new position on the lattice.

The new position must be one of the nearest neighbours, and each of
the neighbours has the same probability to be visited.

Once he is at the new position, the walker regards this position as his
new origin. In other words, he immediately forgets where he came
from.

Every step is made as if it is the first step.

All steps are then independent of each other.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 7 / 1



Random Walk

It is assumed that in the array random are stored numbers which are
uniformly distributed in the interval (0, 1).

A random number from the array is then multiplied by 4 and
converted to an integer value. This integer value can either be 0, 1, 2
or 3 labeling the four possible directions or nearest neighbours on the
square lattice.

The numbers 0, 1, 2 and 3 are uniformly distributed as long as the
numbers in the array random are so distributed. Depending on the
direction the random number points to, the walker occupies the
appropriate position on the lattice by increasing or decreasing the x or
y variable.

The variables xn and yn hold the new position of the random walker.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 8 / 1



Random Walk

Page 1 of 1random-walk1.c
Printed For: Heermann

/* ---- Choose a new nn site ---- */
i = floor(random[index++]* 4.0);
switch (i) {
   case 0: xn = x-1;
           yn = y;
           break;
   case 1: yn = y-1;
           xn = x;
           break;
   case 2: yn = y+1;
           xn = x;
           break;
   case 3: xn = x+1;
           yn = y;
           break;
} /* ---- switch i ---- */

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 9 / 1



Random Walk

1D Random Walks

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 10 / 1



Random Walk

Let us assume that the walker performed N steps. This constitutes
one realization of a random walk.

We may now be interested in computing properties of such a walk.
From just one realization we cannot draw any conclusion since the
walk may be atypical. We need to generate many walks, calculate for
every walk the desired property and then average over the results.

The point which we want to make is that the generation of the
samples, i.e., all the realizations of random walks are generated
independently. Let Ai be the observable property computed for the
i-th realization of a random walk. We define the average, or
expectation value for the observable A, denoted by <A>, as the
arithmetic mean over all Ai

<A> =
1

n

n∑
i=1

Ai . (1)

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 11 / 1



Self-Avoiding Random Walks

Self-Avoiding Random Walks

Not a SAW SAW

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 12 / 1



Self-Avoiding Random Walks Simple Sampling of Self-Avoiding Random Walks

Simple Sampling of Self-Avoiding Random Walks
Page 1 of 2saw-algorithm-simple.c

Printed For: Heermann

    while ( sample < sample_size ) {

      /* ==== Reset the walker to the origin ==== */

      w[0][0]   = xc;
      w[0][1]   = yc;
      x         = xc;
      y         = yc;
      l         = 0;
      occupancy = 0;
      walk++;

      return_code = r250( N,ran,mf);

      while ( (l < N)  &&  (occupancy == 0) )  {
        d  = ran[l] * 4;
        switch (d) {
            case 0:  x++;
                     break;

            case 1:  y++;
                     break;

            case 2:  x--;
                     break;

            case 3:  y--;
                     break;

        }

        if ( ( x < 0 ) || ( x == L ) || ( y < 0 ) || ( y == L ) ) {
            /* Random walker not on the lattice */
            exit(-1);
        }

        if ( g[x][y] < walk ) {
            g[x][y] = walk;
            l++;
            w[l][0] = x;
            w[l][1] = y;
            occupancy = 0;
        }
        else {
            occupancy = 1;
        }
      }

      /* ==== Now check if a SAW was generated. If yes, then ==== */
      /* ==== we do the analysis, else we must try again     ==== */

      if ( l == N ) {
        /* ---- we can compute the end-to-end distance etc. ---- */

        x = xc - w[N-1][0];
        y = yc - w[N-1][1];
        end_to_end += x*x + y*y;

        cmx = 0;
        cmy = 0;

The code can be found here

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 13 / 1

http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/saw.c


Self-Avoiding Random Walks Simple Sampling of Self-Avoiding Random Walks

Performing the simple sampling simulation it becomes immediately
evident that we have a problem with the simple sampling technique
for the self-avoiding random walk model.

As we increase the number of steps the walker should travel, it
becomes harder and harder to find a walk. In almost all cases the
walk terminates earlier because there is a violation of the self-avoiding
condition! (attrition problem).

This shows that the simple sampling, even though being the simplest
and perhaps even most powerful method has clear limitations.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 14 / 1



Self-Avoiding Random Walks Local Move Algorithms

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 15 / 1



Self-Avoiding Random Walks Reptation Algorithm

Reptation Algorithm

1: Assume that we have generated a random walk.
2: Choose one of the end points at random and delete this point.
3: Choose one the end points at random.
4: Add the delete point to the choosen end with a random direction.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 16 / 1



Pivot Algorithm

Pivot Algorithm

Let W denote the set of self-avoiding walks of length N on a lattice λ.

Further let G (λ) be the group of lattice symmetries.

The pivot algorithm [1] takes a self-avoiding random walk and pivots
the walk to generate a new walk from the set W such the sequence of
generated walks yields a Markov chain which is aperiodic and
irreducible with uniform stationary distribution π.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 17 / 1



Pivot Algorithm

Let W denote the set of self-avoiding walks of length N on a lattice λ.

Further let G (λ) be the group of lattice symmetries.

The pivot algorithm [1] takes a self-avoiding random walk and pivots
the walk to generate a new walk from the set W such the sequence of
generated walks yields a Markov chain which is aperiodic and
irreducible with uniform stationary distribution π.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 18 / 1



Pivot Algorithm

Pivot Algorithm

1: Start with a self-avoiding walk ω0 ∈W .
2: Next choose an integer i uniformly from the set {0, 1, 2, ...,N − 1}.

The site connected with this index is the pivot site x = ωt(i).
3: Select a lattice symmetry g uniformly from the symmetry group G .
4: Set ω̄(k) = ωt(k) for k ≤ i , and ω̄(k) = g(ωt(k)) for k〉i .
5: if ω̄ is self-avoiding then
6: ωt+1 = ω̄.
7: else
8: let ωt+1 = ωt .
9: Goto 2. for the next generation t := t + 1.

10: end if

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 19 / 1



Pivot Algorithm

The sequence {ωt} is aperiodic and irreducible with uniform
stationary distribution π.

The sequence further is reversible

π(ωi )P(ωi , ωj) = π(ωj)P(ωj , ωi ) . (2)

Since π is uniform, we need to show that P is symmetric. Suppose
there are m ways to move, with one pivot, from a self-avoiding walk
ω to another self-avoiding walk ω̄. For i = 1, 2, ...,m, consider the
pairs (xi , gi ). Each pair gives a transition, using the pivot algorithm
from ω to ω̄.

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 20 / 1



Pivot Algorithm

Thus,

P(ω, ω̄) =
m∑
i=1

P(g = gi ) · P(x = xi ) . (3)

Notice that the pairs (xi , g−1
i ), for i = 1, 2, ...,m give one-step transitions

from ω̄ and that P(g = gi ) = P(g = g−1
i ) because g is chosen uniformly.

Therefore

P(ω, ω̄) =
m∑
i=1

P(g = gi )·P(x = xi ) =
m∑
i=1

P(g = g−1
i )·P(x = xi ) = P(ω̄, ω) .

(4)

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 21 / 1



Pivot Algorithm

N. Madras and A.D Sokal, The pivot algorithm: a highly ecient Monte
Carlo method for the self-avoiding walk, J. Stat. Phys. 50: 109-186,
(1988)

Dieter W. Heermann (Monte Carlo Methods) Random Walks 2015 22 / 1


	Outline
	Introduction
	Random Walk
	Self-Avoiding Random Walks
	Simple Sampling of Self-Avoiding Random Walks
	Local Move Algorithms
	Reptation Algorithm

	Pivot Algorithm

