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The Ising model [1] is defined as follows:

Let G = L9 be a d-dimensional lattice.

Associated with each lattice site / is a spin s; which can take on the
values +1 or —1.

The spins interact via an exchange coupling J. In addition, we allow
for an external field H.

The Hamiltonian reads

H=-J) sisi+uH> s (1)
(irf) i

The first sum on the right-hand side of the equation runs over nearest

neighbours only.

The symbol 1 denotes the magnetic moment of a spin. If the

exchange constant J is positive, the Hamiltonian is a model for

ferromagnetism, i.e., the spins tend to align parallel.

For J negative the exchange is anti ferromagnetic and the spins tend

to align antiparallel. In what follows we assume a ferromagnetic

interaction J > 0.
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3-D Ising Model
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@ Let E be the fixed energy and suppose that a spin configuration
s = (s1, ..., Sn) was constructed with the required energy.

@ We set the demon energy to zero and let it travel through the lattice.
@ At each site the demon attempts to flip the spin at that site.

o If the spin flip lowers the system energy, then the demon takes up the
energy and flips the spin.

@ On the other hand, if a flip does not lower the system energy the spin
is only flipped if the demon carries enough energy.

@ A spin is flipped if

Ep—AH >0 (2)

and the new demon energy is

Ep = Ep — AH (3)

Dieter W. Heermann (Monte Carlo Methods)| Ising Model 2015 6/1



After having visited all sites one time unit has elapsed and a new
configuration is generated.

In Monte-Carlo method language the time unit is called the MC step
per spin.

After the system has relaxed to thermal equilibrium, i.e., after ng
Monte-Carlo Steps (MCS), the averaging is started. For example, we
might be interested in the magnetization.

Let n be the total number of MCS, then the approximation for the
magnetization is

n
S m(s) (4)
i>ng
where s; is the ith generated spin configuration. Since the demon
energies ultimately become Boltzmann distributed, it is easy to show
that

<m>=
n—ng

J 1 J
i (1regy) )
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) ' '0°'sHastings Monte Carlo
Metropolis-Hastings Monte Carlo

@ The simplest and most convenient choice for the actual simulation is
a transition probability involving only a single spin; all other spins
remain fixed.

@ |t should depend only on the momentary state of the nearest
neighbours.

@ After all spins have been given the possibility of a flip a new state is
created. Symbolically, the single-spin-flip transition probability is
written as

Wi(si) 1 (S1y ey Siyevey SN) — (S1y+eey —Siy vey SN)
where Wi, is the probability per unit time that the ith spin changes
from s; to —s;.

@ With such a choice the model is called the single-spin-flip Ising model
(Glauber).
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@ Let P(s) be the probability of the state s. In thermal equilibrium at
the fixed temperature T and field K, the probability that the i-th spin
takes on the value s; is proportional to the Boltzmann factor

Peolsi) = S0 (‘Zé(;))

The fixed spin variables are suppressed.
@ We require that the detailed balance condition be fulfilled:

Wi(si)Peq(si) = Wi(—si)Peq(—si)

or
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o It follows that

Wi(si) _ exp(=si/Ei)
Wi(s))  exp(si/E)

where

E,' =J Z S5
(i)
@ The derived conditions do not uniquely specify the transition
probability W.
@ The Metropolis function

Wi(si) = min {7, 7 texp(—AH kg T)}
@ and the Glauber function
(1 — s;tanh E,'/kB T)

2T
where 7 is an arbitrary factor determining the time scale.

Wi(si) =
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Algorithmically the Metropolis MC method looks as follows:

1: Specify an initial configuration.

2: Choose a lattice site /.

3: Compute W;.

4: Generate a random number R € [0, 1].

5. if VV,'(S,') > R then

6: S; — —S;

7: else

8:  Otherwise, proceed with Step 2 until MCSMAX attempts have been
made.

9: end if
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Java program can be found
here
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http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/index.htm
http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/index.htm

#include <iostream.h>
#include <math.h>

# define L 10
int  main(int arge, char *argv(])

int mes,i,3,k,ip, jp,kp, in, In,kn;
int old_spin,new_spin,spin_sum;
int old_energy,new_energy;

double beta;
double energy_diff;
double mag;

mesmax = 100;
eta // beta = J/KT KC = 0.2216544 Talapov and Blote (1996)

12;

seed = 4711;

srand(seed);
for (i=0;i<L;ite) {
for (3=0;3<Li3++) {
FheLikr) (

spin(i)(j)(k] = -1;
)
L here

/ Loop over sweeps
for (mes=0;mes<mesmax;mes+t) {

// Loop over all sites
for (i=0;i<L;it) {

n
kn = (k4L-1) ¥ L;

old_spin = spin[i][3](k];
new_spin = - o

// Sum of neighboring spins
spin_sum = spin[1](p][K] + spin[ip](3][K] +
spin[i][jn](k] + spin(in](3](k] +

spin(i][j1(kn] + spin(i1(3](kp];

old_energy = - old_spin * spin_sun;
new_energy = - new_spin * spin_sun;
energy_diff = beta * (new_energy - old_energy);
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http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/ising3d.c
http://wwwcp.tphys.uni-heidelberg.de/comp-phys/Examples/ising/ising3d.c

3D Ising Model
Magpnetization vs. Temperature
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___GClobalAigorithms |
Global Algorithms

See lecture on cluster and multi-grid algorithms
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