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In conventional Monte-Carlo (MC) calculations of condensed matter systems,
such as an N-particle system with a Hamiltonian H = U , only local moves
(displacement of a single particle) are made.

Updating more than one particle typically results in a prohibitively low average
acceptance probability 〈PA〉.
This implies large relaxation times and high autocorrelations especially for
macromolecular systems.

In a Molecular Dynamics (MD) simulation, with H = T + U , on the other hand,
global moves are made.

The MD scheme, however, is prone to errors and instabilities due to the finite
step size in time.

In order to introduce temperature in the microcanonical context, isokinetic MD
schemes are often used.

However, they do not yield the canonical probability distribution, unlike
Monte-Carlo calculations.
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The Hybrid Monte-Carlo (HMC) method combines the advantages of Molecular
Dynamics and Monte-Carlo methods:

it allows for global moves (which essentially consist in integrating the system
through phase space);
HMC is an exact method, i.e., the ensemble averages do not depend on the step
size chosen;
algorithms derived from the method do not suffer from numerical instabilities due to
finite step size as MD algorithms do;
and temperature is incorporated in the correct statistical mechanical sense.
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In the HMC scheme global moves can be made while keeping the average
acceptance probability 〈PA〉 high.
One global move in configuration space consists in integrating the system
through phase space for a fixed time t using some discretization scheme (δt
denotes the step size)

gδt : IR6N −→ IR6N

(x , p) −→ gδt(x , p) =: (x ′, p′)

of Hamilton’s equations

dx

dt
=

∂H
∂p

dp

dt
= −

∂H
∂x

. (1)
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Since the system is moved deterministically through phase space, the conditional
probability of suggesting configuration x ′ starting at x is given by

pC (x → x ′)dx ′ = pC (p)dp. (2)

The initial momenta are drawn from a Gaussian distribution at inverse
temperature β:

pC (p) ∝ e−β
∑N

j=1
p2j
2m . (3)
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Thus

PA((x , p)→ gδt(x , p)) = min{1, e−βδH}, (4)

where

δH = H(gδt(x , p))−H(x , p)

is the discretization error associated with gδt . Using the algebraic identity

e−H(x,p) min{1, e−δH} = e−H(gδt (x,p)) min{eδH, 1} (5)

it can be shown that for a discretization scheme which is time-reversible

g−δt ◦ gδt = id (6)
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and area-preserving

det
∂gδt(x , p)

∂(x , p)
= 1, (7)

detailed balance is satisfied:

p(x)pM(x → x ′)dxdp = p(x)pC (p)PA((x , p)→ gδt(x , p))dxdp

= p(x ′)pC (p
′)PA(g

δt(x , p)→ (x , p))dxdp

= p(x ′)pC (p
′)PA((x

′, p′)→ g−δt(x ′, p′))dxdp

= p(x ′)pC (p
′)PA((x

′, p′)→ g−δt(x ′, p′))dx ′dp′

= p(x ′)pM(x ′ → x)dx ′dp′.

Thus, provided the discretization scheme used is time-reversible and
area-preserving, the HMC algorithm generates a Markov chain with the stationary
probability distribution p(x).
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The probability distribution is entirely determined by the detailed balance
condition.

Therefore neither p(x) nor any ensemble averages depend on the step size δt
chosen.

However, the average acceptance probability 〈PA〉, because of (4), depends on
the average discretization error 〈δH〉 and hence does depend on δt.

It can be shown that for (%,T ) 6= (%c ,Tc )

〈PA〉 = erfc(
1
2

√
β〈δH〉)

is a good approximation for sufficiently large systems (N → ∞) and small step
sizes (δt → 0).

9 / 13



From normalization and the area-preserving property one has

〈e−βδH〉 = 1. (8)

Equation (8) can be expanded into cumulants

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉+ · · · .

In order to obtain a nonzero average acceptance probability 〈PA〉 in the limit
N → ∞ one has to let δt → 0, keeping 〈(δH− 〈δH〉)2〉 fixed.
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In this limit higher-order cumulants will vanish. The resulting distribution of the
discretization error will thus be gaussian with mean and width related through

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉. (9)

From (4) and (9) one has in this case

〈PA〉 =
1√

2π〈(δH− 〈δH〉)2〉

∫ ∞
−∞

dtmin{1, e−βt}e
− (t−〈δH〉)2

2〈(δH−〈δH〉)2〉

= erfc(
1
2

√
β〈δH〉). (10)
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The square root in (10) is always well defined since (8) implies

〈δH〉 ≥ 0.

Equality holds in the limit δt → 0, where energy is conserved exactly and
〈PA〉 = 1.

Increasing the step size will result in a lower average acceptance probability 〈PA〉.
Varying δt, the average acceptance probability 〈PA〉 can thus be adjusted to
minimize autocorrelations.

The momenta do not necessarily have to be drawn from the Gaussian distribution.
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A particularly simple and computationally efficient alternative to would be a
uniform momentum distribution.

This choice, however, did not prove successful, since a cut-off has to be
introduced for computational reasons. This cut-off must be taken into account in
PA, leading to a very low average acceptance probability 〈PA〉.
It is clear that instead of choosing a discretization scheme of Hamilton’s
equations (1) any time-reversible and area-preserving discrete mapping can be
used to propagate the system through phase space.
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