
1

Euroconference on Computer Simulation in

Condensed Matter Physics Chemistry School 1995

Lecture Notes

Parallelization of Computational Physics Problems

Dieter W. Heermann
Institut f�ur theoretische Physik

Universit�at Heidelberg
Philosophenweg 19
D-69120 Heidelberg

Germany
and

Interdisziplin�ares Zentrum
f�ur Wissenschaftliches Rechnen
der Universit�at Heidelberg

voice: +49 6221 549448 (431)
fax: +49 6221 549331

e-mail: heermann@surface.tphys.uni-heidelberg.de

www: http://philosoph.tphys.uni-heidelberg.de

1 Introduction

The motivation to parallelize the algorithms for the treatment of physics problems [1]
by numerical simulations [2, 3, 4, 5, 6] is manifold. It ranges from being able to gather
better statistics, to speeding up the application or to allow for real time visualization.
There is strong motivation for parallelization to be able to simulate rather large systems,
i.e. many particles, molecules, spins, basis for wave functions etc. Even though theories
exist to exploit the �niteness of the system for some problems, it is often necessary to
exclude �nite size e�ects as much as possible.

I want to focus in these lectures, on the concepts to exploit parallelism in physics
problems and on parallelism inherent in the numerical method's one applies to physics
problems.

While a physics problem itself, in general, will be inherently parallel, we must un-
derstand parallelism or its absence resulting from the formulation of the problem or
the method of solution. Two formulations of the same problem may result in a vastly
di�erent complexity regarding the amount of computations necessary and may be in
their parallelization. Take the Ising model

Parallelization of Computational Physics Problems: Draft! 2

H = J
X
<i;j>

sisj + h
X
i

si (1)

Z =
X
s

e��H : (2)

In this formulation we only have a local interaction among the spins. If we apply
a conventional Monte Carlo method to study the Ising model in this formulation, we
can exploit that the lattice naturally can be partitioned into independent sublattices
concerning the updating.

The Ising model can also be studied using the formulation of a random cluster
model [7] with the partition function

Z =
X
C

B(�;C)2n(C) : (3)

In this formulation the clusters are independent but stretch over the entire lattice
and we have lost the locality. This implies that the lattice does not partition into
independent sublattices! The point I am trying to make is that the formulation of the
model can play a central role whether one can parallelize a problem to a good degree.
This does not necessarily imply that the better parallelized problem is more e�cient.
E�ciency here can mean for example how e�ectively one has reduced the correlation's
among successively generated states.

The issue of parallelization of physics problems is even broader. We need to consider
also the methods we are using to simulate a system to obtain observable quantities as
well. Again let us use the Ising model to exemplify the point.

Suppose Poisson events arrive at a spin. Every spin carries an individual time. The
Poisson event changes the spin to a new orientation. The spin can only change to a
new orientation if its local time is less than the minimum of the time of the neighbour
spins with which the spin is interacting. If this is not the case it must wait till it is in
the past. This idea was beautifully worked out by Lubachevsky [8].

In this formulation the spins are independent and can be operated upon concurrently.
We changed from the paradigm of time-driven simulations to event-driven simulations.
The point that this is not necessarily a statement of e�ciency must be made again.
Also the e�ciency in terms of wall clock time may not be better.

A further example for an algorithm [9] for the simulation of the Ising model will be
given latter.

2 Concepts to Exploit Parallelism

In general we can say that there are several types of parallelism inherent in physics
problems. These are:

� independence

Parallelization of Computational Physics Problems: Draft! 3

� time correlated

� space correlated

As worked out in the introduction, the parallelism does not always come natural
with the problem. Rather, one needs to consider the model, the method and the
implementation. There are, however, concepts for parallelization that work independent
of the actual problem. These are general concepts applicable to all kinds of science
problems.

One can distinguish between the following general concepts

� poor mans parallelization

� data parallelization

� algorithmic parallelization

� domain decomposition

These make use of the independence relations that are naturally associated with
any problem. The poor mans parallelization exploits that one often is interested in
gathering a sample of independent runs. The data parallelization exploits the volume
of the data and partitions the data workload among the processors. The algorithmic
parallelization exploits the independence of the execution of parts of the algorithm and
�nally the domain decomposition partitions the space into independent subspaces.

3 Poor Mans Parallelization

The most often used parallelization today is presumably the so called poor mans par-
allelization. In the poor mans parallelization a given code is replicated as many times
as there are processors (c.f. Figure 1). Each program on a processor executes indepen-
dently from the other copies. No communication beside the input/output of results is
necessary, that is, the programs or processes on di�erent processors do not communi-
cate with each other. Since there is no communication, there are no idle times for the
processors (except for possible data communication to the outside world) and therefore
the e�ciency with which the processors are used is 100 percent. Of course, in terms of
the computational cost, i.e., money per run, this concept is not so cost e�ective since we
are not using the parallel computer with all its infrastructure (communication network,
...). Nevertheless, for the gathering of statistics in Monte Carlo or Molecular Dynamics
problems, this concept is very well suited. Clearly this concept is applicable to almost
any physics problem, provided the problem size is su�ciently small and the processor
su�ciently powerful, to sustain the execution of the code and �nish in reasonable time.

This type of parallelism is exploitable without almost any change to the codes.
Existing code can be used.

Parallelization of Computational Physics Problems: Draft! 4

Figure 1: In the poor mans parallelization a production code for a single processor ma-
chine is distributed in identical copies to the number of available or desired processors.
All execute concurrently without communication among the copies.

This concept is not new! Already during pre vector and parallel computer time
one used the parallelism that natural come with the word length of the computer. For
example, on an n bit machine, n spins of independent Ising systems can be stored and
operated upon. Also during the vector period it was common practice to store many
independent entities in one computer word.

3.1 Data Parallel Algorithms

Data parallel algorithms assign a �xed workload to a processor. The amount is in
general evenly spread among the processors. An obvious application for this idea is a
situation where the system cannot be split into spatial domains since the system changes
in its spatial uniformity. In Figure 2 is shown a randomly triangulated surface [10]. If
we were to split space into domains, then an uneven workload would result because
the surface can change its state from collapsed to extended. Today there is no general
algorithm available to handle this imbalance of the workload. Such a scheduler would
need to shift \particles" or nodes in the present case from processor to processor. Such
a situation is more e�ciently handled by a user written code.

In general the application of this concept is good for situations where one cannot
partition the system into small units with only nearest neighbour interaction. The
typical situation is a system with long-range forces. Also from the implementation side
this concept is advantageous since the coding work is less demanding and less complex
than for the domain decomposition. Also it is less error prone and allows rapid code
development.

Let us take the simulation of a simple system with atomic particles by molecular
dynamics. The application of the concept of data parallelization implies that we di-
vide the number of particles N evenly among the available p processors. This is done
irrespective of the spatial position of the particles. Once a particle is assigned to a pro-
cessor, it will continue to reside their (c.f. Figure 3). While there is no problem with

Parallelization of Computational Physics Problems: Draft! 5

Figure 2: Shown is a randomly triangulated surface at two di�erent bending rigidities.
These two �gures show that if one uses a simple domain decomposition, problems with
the load balancing can occur. In this situation data parallelism may be an alternative.

Parallelization of Computational Physics Problems: Draft! 6

Figure 3: Example of a data parallelization for the particles in a molecular dynamics
simulation. The particles are assigned to processors irrespective of their spatial position.
The particle are circled to allow the computation of the forces.

the workload, there is now a much larger demand for communication. Every processor
needs the information from all the other to gather the particle positions to calculate
the forces acting on the particles residing or assigned to that processor. The particle
positions need to be circled, implying that a ring communication network may used.

While this concept can be implemented in a fairly straight-forward way, it has some
draw backs. Strong emphasis is put on the communication infrastructure. Also, it
is di�cult to implement further schemes to reduce the computational overhead, for
example tables and the like.

3.2 Algorithmic Parallelism

In some sense, already the general computer is able to perform an algorithmic paral-
lelization. Already in the early days of computer and processor design, one looked for
parallelism in the computer codes. If you look at the design of RISC processors for ex-
ample, you �nd that several instructions can be computed in parallel. The algorithmic
parallelism also wants to exploit the parallelism that is inherent in the \code". Take for
example the stages that one needs to go through in a molecular dynamics simulation.
You can easily convince yourself that parts of the algorithm can be done simultane-
ously if you had components in the computer that can sustain such a parallelism. Most
prominently this type of parallelism found application in special purpose computer.

Let us look at the molecular dynamics example. We do not want to go into the
details of possible algorithms but pursue here the algorithm in a top-down approach.

------ Basic Molecular Algorithm ------

...

FOR n = 1 TO NumberOfMDSteps DO

Compute the forces on the particles

Integration for the positions

Integration for the velocities

END FOR

On this level it is hard to see where we have parallelism so let's be more explicit.

Parallelization of Computational Physics Problems: Draft! 7

------ Basic Molecular Algorithm ------

...

FOR n = 0 TO NumberOfMDSteps - 1 DO // Loop 1

Compute the forces on the particles

FOR i = 0 TO N - 1 // Loop 2

Integration for the ith particle position

END FOR

FOR i = 0 TO N - 1 // Loop 3

Integration for the ith particle velocity

END FOR

END FOR

Now we see that we can unroll the loops 2 and 3 onto the available number of
processor's p. Every processor receives N=p loop cycles. This is very similar to the
data parallelism that we discussed in the previous section. Automatic parallelizers try
to pursue such a strategy that works best when the underlying hardware has a shared
memory (see later).

Similarly, the N2 loop implicit in the computation of the forces, if we do not provide
measures to reduce the complexity, can be unrolled to the available processors reducing
the computational complexity.

Along the same line, we can study the basic Monte Carlo algorithm. Here we want
to use a lattice model.

------ Baisic Monte Carlo Algorithm ------

...

FOR n = 0 TO NumberOfMCSteps - 1 DO // Loop 1

FOR i = 0 TO N - 1 // Loop 2

FOR j = 0 TO N - 1 // Loop 3

Choose a lattice site

Calculate the energy change

Generate a random number r

IF accept change THEN

change site value

END FOR

END FOR

END FOR

Here unrolling the loop is dangerous. We must retain detailed balance. On this
level, the generation of the random number can be done concurrently with the fetching
of the site value and the computation of the change of energy. If we had, as possible for
the Ising or similar models with only nearest neighbour interaction, split the lattice into
two sublattices, we could unroll the loops and assign them to processors. Every site on
a sublattice is independent and for example the innermost loop for one sublattice can
be unrolled.

If you recall the Ising formulation from the introduction, we now also see that the
reformulation of the basic method in terms of an event-driven simulation removes some
of the obstacles to the parallelizabilitly.

Parallelization of Computational Physics Problems: Draft! 8

On the hardware level machines were build to support concurrency. Examples are
the Delft machine[11] (Delft Ising System Processor: DISP) that reects in a direct way
the structure of the Monte Carlo algorithm or the machine build by the Santa-Barbara
group [12]. The Santa Barbara architecture allows to exploit the inherent parallelism
of Monte Carlo Ising simulations that result from the data structure and the condition
of detailed balance. Instead of using just one processor, one can include many more so
that one can update spins in parallel.

The processor as such reects, similar to the Delft computer, the structure of the
Monte Carlo algorithm. The Santa Barbara machine optimizes the performance ex-
ploiting the data structure and the algorithmic structure.

Also for Molecular Dynamics the algorithmic parallelism is exploitable on the hard-
ware level. Examples here include the IBM Almaden Research machine [13] or the
implementation using of the algorithm on transputers put forward by the CCP5 group.

3.3 Domain Decomposition

In a wide sense, domain decomposition has been applied earlier than parallel computers
became available. The multi-spin coding [14] method serves as an example. Di�erent
independent sublattices are coded into a single computer word and can be operated
upon simultaneously. What we here want to follow and develop, is the concept of
geometrically breaking up a system such that the parts can be operated upon, at least
for some time, before there is a possible exchange of information.

The most straight forward application of this concept is to partition a lattice or a
computational box for the molecular dynamics methods into subboxes. Every subbox
holds, in general, a di�erent number of particles in the case of a molecular dynamics
computational box. This brings up immediately the question of load-balancing. If the
number of particles is not equal on all processors, then some �nish earlier than others
and the overall utilization of the machine will drop. Here we do not want to go into
discussions on this issue but it should be kept in mind.

For the application to lattice systems this issue does not play a role. I will later on
also discuss very briey the application of the idea of geometric or domain decomposi-
tion to lattice systems (see section 6).

Even though there is no real need to partition the computational box into equal
subboxes we will for the sake of simplicity assume so. Graphically this is shown in
Figure 4. Some applications with perhaps non-homogenous particle distribution may
be better treated with a di�erent kind of partitioning or perhaps adaptive partitioning.

We shall also assume that the communication between the processors is synchronous,
that is, the sender cannot send the message and carry on with the execution of the code
but has to wait till the receiver actually accepts the data. We shall also assume that
the processor and language do not allow for a concurrent execution of sending and
receiving.

In the section on the algorithmic parallelization I exposed the basic steps for a
molecular dynamics simulation and I want to use this example here too. Let us focus

Parallelization of Computational Physics Problems: Draft! 9

Figure 4: Example of a domain decomposition for the square.

on the force calculation, because the integration part can be done on each processor
independently, once the forces acting on the particles in one subcell have been accumu-
lated.

obtain node id myid

obtain neigbour node ids

...

do force calculation on particles in own box

exchange particles over edges

exchange particles over nodes

compile particle list

force calculation for interaction with neighbouring cells

update positions and velocities

With the notation introduced in the Figure 4 we can write down a pseudo-code for
the communication part.

// ---- COMMUNICATION VIA THE EDGES ----

// Odds send, even receives over the edges

FOR # edges DO

IF myid is odd THEN

SEND particles TO PID(edge)

ELSE

RECEIVE particles FROM PID(edge)

END IF

END FOR

// Odds receives, even sends over the edges

FOR # edges DO

IF myid is even THEN

RECEIVE particles FROM PID(edge)

ELSE

SEND particles TO PID(edge)

END IF

END FOR

Parallelization of Computational Physics Problems: Draft! 10

// ---- COMMUNICATION VIA THE NODES ----

// Odds send, even receives over the nodes

FOR # nodes DO

IF myid is odd THEN

SEND particles TO PID(node)

ELSE

RECEIVE particles FROM PID(node)

END IF

END FOR

// Odds receives, even sends over the nodes

FOR # node DO

IF myid is even THEN

RECEIVE particles FROM PID(node)

ELSE

SEND particles TO PID(node)

END IF

END FOR

Care with the periodic boundary condition must be taken. Clearly the example in
Figure 4 does not work if we apply periodic boundary conditions. At the opposite end
we must have opposite colored boxes.

4 Machine Considerations

Today one has three basics choices for the machine architecture:

� Shared-Memory Machine

� Distributed-Memory Machine

� Hybrid between shared and distributed

Shared-memory machine's can be often found among the workstations. Up to four
or sixteen processors share a global memory as shown schematically in Figure 5. Shared-
memory machines are di�cult to handle from a technological point of view.

The memory is shared between the processors. Communication is done via the
shared memory. Data is put into designated regions of the memory by a processor who
wants to communicate a result to another processor. The receiving processor looks
at the communication region and reads the data from there. This is �ne as long as
there is only one producer and one consumer. If there are many producers and many
consumers, a synchronization mechanism must be established to avoid conicts.

Today technology allows to handle a fair number of processors to be attached to a
shared memory and the users need not to worry about the synchronization. It must be
stressed, however, even though message passing is \easy", there is a constraint in that

Parallelization of Computational Physics Problems: Draft! 11

CPU

Memory

Figure 5: Shared memory machine designs

Processors

Memory

Communication Net

... ...

... ...

Figure 6: Distributed memory machine design

the number of processors that can be attached to one memory unit is much less than
for machines with a distributed memory.

Distributed memory machines can be build with a huge number of processors. The
only limit here is the communication bandwidth between the processors. Each processor
has its own memory in this design (c.f. Figure 6) making it necessary to communicate
date via an interconnection network to another processor. Here the issue is the kind of
network and the bandwidth between to processor nodes.

In Figure 7 are shown some possibilities to connect the processors in a distributed
memory design.

5 Language Considerations

Automatic parallelization can only be done on the most trivial level. Certain kind
of \do" or \for" loops can be split and distributed among the processors. This is a
parallelization not on the operations level as for the vectorization, but on the level of
constructs. However, it must be stressed, that so far, and perhaps for some time to come,
automatic parallelization will be not as advanced as the automatic vectorization. In
any case, this can serve to parallelize algorithms designed for single processor machines.
For multi-processor machines new algorithmic ideas need to be developed.

The most common languages that support in some sense the parallelization are
FORTRAN 90 and C. There are various \dialects", for example

� C* [17]

Parallelization of Computational Physics Problems: Draft! 12

Figure 7: Various topologies for the interprocessor connectivity

� CC++ [18]

� Cp++ [19]

� FORTRAN M [20]

that speci�cally support parallel constructs. More common is the augmentation of a
language with a set of routines to facilitate the data exchange between processes. There
is quite a number of such libraries on the market. Lately, however, an initiative was
successful to standardize the message passing. This has produced the MPI (Message
Passing Interface) standard [21]. The standard has been adopted by all major computer
and software vendors and there are public domain implementations available. Thus for
reasons of software portability and software reengineering this is the software of choice
for the years to come.

MPI incorporates two models of message passing

� Point-to-Point communication by direct message passing and

� global communication with primitive objects on distributed data

In passing we note that the popular PVM does not support both models of message
passing!

6 A new algorithm for the simulation of large lattice

systems

In the following, I describe a new algorithm [9] for simulating two{dimensional Ising
lattices with local updates and discuss the parallelization. Unlike conventional algo-

Parallelization of Computational Physics Problems: Draft! 13

t

x

Figure 8: The spin value of the last MC step (black) depends on a triangle of spins at
earlier time steps. The spins at t = 0 (grey) can be drawn randomly according to a
certain distribution (warm start) or can be �xed (cold start).

rithms, memory requirements scale linear with only one system dimension and with the
number of Monte Carlo time steps. With the algorithm it is was possible to simulate a
106x106 lattice on systems with only 128 MB main memory [22].

Because of the locality of the interactions in an Ising type lattice system, it is in
principle possible to calculate the value of each spin at an arbitrary MC step ab initio,
i.e. from initial conditions (see Figure 8).

The general Metropolis[15] update rule for calculating the new value of a spin snew
from its old value sold and the values of its neighbour spins fsnng can be written as

snew = f(sold; fsnng; r) (4)

where r is a (pseudo) random number

f(s; fsnng; r) =

(
�s for r < exp (�2�s

P
fsnng)

s else

The four next neighbours of spin s(x; y) in a rectangular lattice are, of course,

Parallelization of Computational Physics Problems: Draft! 14

1 2 43
x

t

Figure 9: Parallelization of the lattice using domain decomposition. The shaded borders
are sent to the left neighbour processor in a round-robin fashion after the step 3 of the
initial setup.

fsnn(x; y)g = fs(x+ 1; y); s(x� 1; y); s(x; y � 1); s(x; y + 1)g

If one is only interested in local observables like magnetization and energy, it is
therefore possible to calculate spins at di�erent MC steps simultaneously and avoid
storing the whole lattice. Instead of iterating the lattice through the MC update steps,
one can iterate spin values at di�erent MC steps through the lattice. For a �xed number
of MC steps that is smaller than the linear dimension of the system (as in a study of
relaxation into equilibrium, where only the �rst update steps are of interest) this may
lead to less memory requirement than storing the full lattice at one time step.

Although the memory constraints for simulating very large lattices have been re-
leased by the algorithm described above, computing time of course still scales linear
with the system size and the number of Monte Carlo steps. A natural approach to
decrease computation time is to divide the computational work on to n processors, for
instance, on a cluster of workstations or a parallel computer. This can be done by
dividing the lattice into sub-lattices of equal size (domain decomposition). It turns out
that the problem here is suited very well for parallelization. However, unlike in conven-
tional domain-decomposition schemes, where the rectangular lattice is divided along
one or more dimensions into rectangular sublattices (cf. [16]), in this case a division of
the (x; y; t)-lattice into parallelogram-like sublattices along the x-axis turns out to be
most e�cient. (see Figure 9)

Parallelization of Computational Physics Problems: Draft! 15

Because the lattice is calculated for all time steps simultaneously, communication
of the (y; t) lattice border among neighbour processors needs to take place only once
after the setting up of the roof structure. Additional communication is needed only for
the global sums of the observables making the parallelization highly e�cient even for
moderate problem sizes.

7 A Case Study

It seems quite obvious that one can develop a parallel algorithm for the simulation of
polymer systems. What I want to present in these notes is one solution for such a
simulation algorithm.

For polymer simulations it is necessary to have good computational algorithms [23].
Such simulations tend to be very time consuming. This is �rst o� all due to the long
relaxation times. Before a single polymer has reached a new conformation that is
statistically di�erent, one has to generate in the worst case of the order of O(N3) move.
Here N is the length of the polymer that we regard as a string with N beads.

The model I want to use, is derived from a corarse-graining approach. In the coarse-
grained approach, the detailed chemistry only enters in the derivation of the potential
between new interacting units. These are substitutes for the original detailed chemistry.
The system is considered on a larger length and longer time-scale. Loosely speaking,
the fast degrees of freedom, like the bond vibrations have been eliminated and the short
spatial length scales upscaled.

In this model the basic building block is an ellipsoid (c.f. Figure 10). Using this
building block chains one can construct, may they be linear chains, chains with side
chains or branched. Because the ellipsoid can degenerate into a sphere, the model is
able to accommodate and model even complex monomer units. An example is shown
in Figure 11 for the modeling of the HIP-PC with additional spheres attached to the
ellipsoids to model the side group [24].

7.1 The Hybrid Monte Carlo Method

In conventional Monte Carlo (MC) calculations of condensed matter systems, such as
an N -particle system with a Hamiltonian H = U , only local moves (displacement of a
single particle) are made [2, 3, 5]. Updating more than one particle typically results in
a prohibitively low average acceptance probability hPAi. This implies large relaxation
times and high autocorrelations especially for macromolecular systems. In a Molecular
Dynamics (MD) simulation, with H = T + U , on the other hand, global moves are
made. The MD scheme, however, is prone to errors and instabilities due to the �nite
step size in time. In order to introduce temperature in the microcanonical context,
isokinetic MD schemes are often used [5]. However, they do not yield the canonical
probability distribution, unlike Monte Carlo calculations.

The Hybrid Monte Carlo (HMC) method [25, 26, 27] combines the advantages of
Molecular Dynamics and Monte Carlo methods: it allows for global moves (which

Parallelization of Computational Physics Problems: Draft! 16

Figure 10: The general ellipsoidal model for polymer systems

Parallelization of Computational Physics Problems: Draft! 17

Figure 11: Schematic representation of the modelling of HIP-PC within the ellipsoidal
model.

Parallelization of Computational Physics Problems: Draft! 18

essentially consist in integrating the system through phase space); HMC is an exact
method, i.e., the ensemble averages do not depend on the step size chosen; algorithms
derived from the method do not su�er from numerical instabilities due to �nite step
size as MD algorithms do; and temperature is incorporated in the correct statistical
mechanical sense.

The application of the Hybrid Monte Carlo method has been proposed [26] for
condensed-matter systems and investigated for atomic uids. In the present contribu-
tion the method will be described briey and applied to macromolecular systems.

In a HMC scheme global moves can be made while keeping the average acceptance
probability hPAi for a move high. This can be achieved as follows. One global move in
con�guration space consists in integrating the system through phase space for a �xed
time t using some discretization scheme g�t (�t denotes the step size)

g�t : IR6N �! IR6N

(x; p) �! g�t(x; p) =: (x0; p0)

of Hamilton's equations

dx

dt
= @pH

dp

dt
= �@xH: (5)

At the beginning of each global Monte Carlo step the initial momenta are drawn from
a Gaussian distribution at inverse temperature �:

pGaussian(p) / e��T ; (6)

and it can be shown [26] that the acceptance probability is then

PA((x; p)! g�t(x; p)) = minf1; e���Hg; (7)

where

�H = H(g�t(x; p))�H(x; p)

is the discretization error associated with the discretization scheme g�t. Provided the
discretization scheme is time-reversible and area-preserving detailed balance is satis�ed
[26]. Thus the HMC algorithm generates a Markov chain with a Boltzmann distribu-
tion as the stationary probability distribution. The probability distribution is entirely
determined by the detailed balance condition, therefore neither the distribution nor any
ensemble averages depend on the step size �t chosen.

Parallelization of Computational Physics Problems: Draft! 19

However, the average acceptance probability hPAi, because of (7), depends on the
average discretization error h�Hi and hence does depend on �t. Increasing the step
size will result in a lower average acceptance probability hPAi. Varying �t, the aver-
age acceptance probability hPAi can thus be adjusted to minimize autocorrelations of
observables.

We have proven a more general result which can be exploited in the simulations.
The Metropolis transition probability is really composed of two probabilities [25]:

pM ((x; p)! (x0; p0)) = PCPA

i.e.,. a propositional probability for a con�guration and one for the acceptance.
As long as we accept the con�guration with the Hamiltonian H we can use any other
Hamiltonian H0 to derive equations of motion for the proposition. Speci�cally, we can
use H0 = �H. This choice is motivated by the observation [28] that the e�ect of the
discretization of the original Hamiltonian on the equations of motion, is to renormalize
the original Hamiltonian. Thus, instead of the original Hamiltonian a new scaled one is
solved exactly. This observation can be used to scale out to a certain degree the e�ect
of the discretization error on the acceptance rate and accelerate the algorithm.

With respect to the parallelization the algorithm has the de�nite disadvantage that
a global sum is need to decide whether the computed con�guration be accepted or
rejected. However, since in the applications that are envisaged for this method (see
below) this is only a tiny fraction of the actual computing cost and be neglected.

7.2 Parallelization of the Polymer System

The Molecular Dynamics part for the above outlined method is fairly general and can
be considered on general grounds, except that we are dealing we long chain molecules.
If we were to consider only atoms, then we could apply the domain decomposition
concept. For polymer systems, if we are to keep a single chain to be the \unit" then the
computational box can not be partitioned into many subvolumes. The chain may stretch
over many such subvolumes. From this point of view it is not advantageous to use a
data structure and integration algorithms that work on the basis of the connectivity
knowledge. Rather we should have as the basic data structure one for the atom. Then
we could apply the ideas developed for the domain decomposition also to the polymer
system. The price here to paid is a higher administrational overhead. The algorithm
can not be based on the connectivity and every \atomic data structure" must carry
information on the chain connectivity. What is passed around is this data structure
with the accumulated results for the force on that particular \atom". This also implies
that there must be some instance that ensures that after a certain number of steps
all information was gathered to guarantee a position update in terms of an integration
step.

This approach also facilitates the application of the program to many di�erent types
of polymer systems. Since there is no reference to the chain connectivity with the
program (all information of this nature is hidden to the program and build into the

Parallelization of Computational Physics Problems: Draft! 20

Figure 12: Shown is a schematic picture for the parallelization of the polymer system.
In this implementation not polymers are the units that are passed but atoms.

data structure) one is able to simulate systems ranging from simple linear chains to
branched or even networks.

Acknowledgement This work was partially funded by a grant from the BMFT
and EU. I would like to thank A. Linke, K. Zimmer, P. Altevogt and A.N. Burkitt for
the stimulating discussion and the work they have putted into our joint e�orts.

References

[1] D.W. Heermann and A.N. Burkitt, Parallel Algorithms of Computational

Science Problems Springer Verlag, Heidelberg 1990

[2] K. Binder and D.W. Heermann, The Monte Carlo Method in Statistical

Physics: An Introduction Springer Verlag, Heidelberg 1988

[3] D.W. Heermann, Computer Simulation Methods in Theoretical Physics,
Springer Verlag, Heidelberg 1986

[4] Hoover, Molecular Dynamics, Springer Verlag, Heidelberg 1985

[5] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon,
Oxford, 1987

Parallelization of Computational Physics Problems: Draft! 21

[6] M.H. Kalos, Monte Carlo Methods Wiley and Sons, New York, 1986

[7] C.M. Fortuin and P.W. Kastelyn Physica 50, 297 (1972)

[8] B.D. Lubachevsky, Journal of Comput. Phys 75, 103 (1988)

[9] A. Linke, D.W. Heermann and P. Altevogt, Commput. Phys. Commun. in press

[10] Ch. M�unkel and D.W. Heermann, Phys. Rev. Lett. 1995

[11] A.Hoogland, J. Spaa, B. Selman, and A. Compagner, J. Comput. Phys. 51, 250
(1983)

[12] R.Pearson, J.L. Richardson, and D. Toussaint, J. Comput. Phys. 51, 241 (1983)

[13] � D.J. Auerbach, A.F. Bakker, T.C. Chen, A.A. Munshi, W.J. Paul, Mat. Res.
Soc. Symp. Proc. 63, 219 (1985)

� D.J. Auerbach, W. Paul, A.F. Bakker, C. Lutz, W.E. Rudge, and F.F. Abra-
ham, J. Phys. Chem. 91, 4881-4890 (1987)

[14] L. Jacobs,C. Rebbi, J. Comp. Phys. 41 203 (1981)

[15] N. Metropolis, A.W.Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem.
Phys., 22 881 (1954)

[16] P. Altevogt, A. Linke, Parall. Comp. 19 1041 (1993)

[17] C* C� Thinking Machines Co. Manual

[18] CC++ http://www.compbio.caltech.edu/ccpp/hpcpp.html

[19] Cp++ http://www.cs.uoregon.edu/ bhelm

[20] Fortran M http://www.mcs.anl.gov/fortran-m

[21] The report on the standard can be optain via anonymous ftp from the following
sites

� netlib2.cs.utk.edu/mpi/mpi report.ps

� aurora.cs.msstate.edu/pub/mpi/mpi report.ps.Z

� info.mcs.anl.gov/pub/mpi/mpi report.ps.Z

� bag.osc.edu/pub/lam/mpi report.ps.Z

[22] A. Linke, D.W. Heermann and P. Altevogt, Physica A submitted

[23] K. Kremer and K. Binder, Phys. Rep. xxx

[24] K. Zimmer, A. Linke and D.W. Heermann, in preparation

[25] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B 195, 216
(1987)

Parallelization of Computational Physics Problems: Draft! 22

[26] B. Mehlig, D. W. Heermann and B. M. Forrest, Phys. Rev. B, 45, 679 (1992)

[27] B. Mehlig, D. W. Heermann and B. M. Forrest, Mol. Phys. 76, 1347 (1992)

[28] G.G. Batrouni, G.R. Katz, A.S. Kornfeld, G.P. Lepage, B. Svetitsky, K.G. Wilson,
Phys. Rev. D 32, 2735 (1985)

[29] M. Creutz and A. Goksch, Phys. Rev. Lett. 63, 9 (1989)

[30] D. Rigby and R.J. Roe, J. Chem. Phys. 87, 7285 (1987)

[31] A. Greiner, W. Strittmatter, and J. Honerkamp, J. Statis. Phys. 51, 85 (1988)

[32] J. Baschnagel, K. Qiun, K.Binder, and W. Paul, Macromolecules, 25, 3117 (1992)

[33] R. Gupta, G.W. Kilcup, and S.R. Sharpe, Phys. Rev. D, 38, 1278 (1988)

[34] G.S. Grest and K. Kremer, Phys. Rev. A, 33, 3628 (1986)

[35] W. Paul, K. Binder, D.W. Heermann, and K. Kremer, J. Chem. Phys. 95, 7726
(1991)

[36] A. L. Rodr��guez, H.{P.Wittmann, and K. Binder, Macromolecules, 23, 4327 (1990)

