
Theoretical Biophysics
A Computational Approach
Concepts, Models, Methods and Algorithms
Methods

Dieter W. Heermann

April 20, 2020

Heidelberg University

1 / 169

Table of Contents

1. Introduction

General Remarks

Force Fields

2. Molecular Dynamics

Basic Algorithm

Boundary Conditions

Verlet Algorithm

Constant Temperature Molecular
Dynamics

Constant Pressure Molecular
Dynamics

3. Langevin Dynamics

4. Monte Carlo Method

Random Numbers

Accept/Reject Method

Gibbs-Sampler

Sampling from an Empirical
Distribution

Monte Carlo Sampling

Markov Chain Monte Carlo

Metropolis-Hastings Monte Carlo

Error Analysis

Hamiltonian Monte Carlo

Rejection-Free Monte Carlo

5. Excercises
6. Bibliography

7. Index

2 / 169

Introduction

Introduction I

In these set of lectures you will find much more material than can be realistically
taught in a course. Hence, each lecture will focus on particular aspects. The
additional material may serve to further the understanding. We will cover a lot of
ground starting off with basic computational methods. Clearly we will not be able to
cover them all. Rather we focus on basic methods.

Let us consider the time and space scales that are involved modelling biophysical
systems. Biological systems range in spatial scales from the

atom level 10−10m

molecular scale 10−9m

organism level 1 m

to times scales of

typical vibrational frequencies 10−13s

molecular interaction 10−3s

human lifespan 109s

3 / 169

Introduction II

Hence, both in time and space we need to cover many orders of magnitude. To deal
with this, we need to describe systems on the relevant scales on which they exhibit a
particular behaviour. In the same spirit, methods need to be developed to investigate
the model on that particular scale. Thus this separation of scales needs to be bridged.

A challenge is the coupling between the models and methods (multi-scale models /
methods). Figure 1 illustrates the general idea. The system is modeled on three
different scales. Couplings describe the interaction between the scales such that for
example the temperature remains invariant.

4 / 169

Introduction III

time

sp
ac
e

1

2

3

Figure 1: Scales in a multi scale model and the interaction between the scales

5 / 169

Introduction IV

An example multi-scale of models / methods will be put forward in a lecture later on.
To start off here is a very condensed account of the history of the development of
computational methods pertinent to that we will encounter:

1953 Monte Carlo method applied to hard spheres [1]

1956 Molecular dynamics of hard spheres [2]

1964 Molecular dynamics of liquid argon [3]

1971 Molecular dynamics of liquid water [4]

1976 Simulation of protein dynamics [5]

1977 Non-Boltzmann sampling [6]

1992 Multi-Canonical Monte Carlo [7]

1999 Generalized and extended ensemble methods [8]

General literature for the course can for example be found in [9–12].

6 / 169

General Remarks I

Shown below are 256 Lennard-Jones particles using the parameters for argon at the
density of 0.636 and reference temperature T = 2.53.

A B C

Figure 2: Panel A shows crystal structure, B shows a liquid structure and C an overlay of the
two for comparison. Note that the radius with which the particles are depicted does not reflect
the size of the particle.

7 / 169

General Remarks II

Figure 3: Lennard-Jones liquid where the particles are depicted with a radius where the
Lennard-Jones potential is zero (see later in the section on force fields).

8 / 169

General Remarks III

Figure 4: Shown is the model of a CTCF protein. Image taken from [13].

9 / 169

General Remarks IV

A molecular model requires typically

definition of the degrees of freedom

force fields

boundary conditions

and a method to generate configuration or conformations (in the case of a
macromolecule) as in the above two examples.

Typically for biological systems we are dealing with objects in Euclidean space R3. We
will also be dealing with objects in more abstract spaces S .

Let x denote a position in space which is derived from the degrees of freedom
that are associated with space. Sometimes we will also use s or q. x can for
example be the three-dimensional position x = (x1, x2, x3)T .

Let p denote the dynamical variable (for example the momentum)
p = (p1, p2, p3)T .

10 / 169

General Remarks V

If we analyze the system in terms of dynamics then we need both the position and
momentum of system in order to determine the future behavior of that system. Note
that often position and momentum or in other circumstances we will use x to denote
the state of a system which in the current case may comprise both position and
momentum.

Recall that the

phase space P is the space of all possible states of a physical system.

Let t ∈ R denote time, then a trajectory is a mapping

t 7→ (q(t), p(t)) (1)

11 / 169

General Remarks VI

q

p Phase Space

Trajectory

Figure 5: Phase space with generalized coordinate q and generalized momentum p.

12 / 169

General Remarks VII

More generally, we consider a state space S and a mapping Tt which transforms a
state s ∈ S into a new state s′ or s(t)

Tt : S→ S (2)

The state space S or X may for example be S = SZd
where S = {−1, 1}, or

S = {0, 1}, S = {0, ..., q − 1}.

This mapping may be a differential equation, as for example in the case of molecular
dynamics, the discrete form of the differential equation, partial differential equation or
stochastic processes.

13 / 169

Force Fields I

A central part of molecular dynamics, partially Monte Carlo, etc. is the computation
of the force that is exerted on a particle or unit

F (r) = −∇U(r) (3)

where U is the potential energy expanded into one-body, two-body, three-body etc.
interactions

U (r) = U0 +
∑
i

U1(ri) +
∑
i<j

U2(ri , rj) +
∑

i<j<k

U3(ri , rj , rk) + · · ·+ UN(ri , rj , . . . , rN) .

(4)

One way of categorizing the basic potential energy is to partition it into intra- and and
inter-molecular interaction. This distinction becomes relevant in the case of
macromolecules like DNA, proteins etc.

14 / 169

Force Fields II

Potential

Excluded
Volume Coulomb Bond Angle Torsion Dihedral

Inter Intra

...

Figure 6: Shown is a possible classification scheme for potentials.

15 / 169

Force Fields III

Bonded (Intra): This describes the covalent bonding between two atoms as:
bond stretching and bending. Beyond the pair-potential in this class we also find
the torsional potential.
Assume a pair of nearest atoms (i , j) then

Ubond(rij) =
1
2
kb(rij − l0)2 (5)

is a two-body potential, where rij = ||ri − rj ||. Here l0 is the equilibrium distance
between i and j . k the is the spring constant or strength of the interaction.

16 / 169

Force Fields IV

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3
-1

-0.5

 0

 0.5

 1

U
(r

)

F
(r

)

r

Harmonic Potential
Harmonic Force

Figure 7: Harmonic potential as described in Equation 5 and the corresponding force.

17 / 169

Force Fields V

The three-body interaction (i , j , k) describes the bond angle interaction

Ubond angle(θ) =
1
2
kθ(θ − θ0)2 (6)

where θ is the angle between the vectors rij = rj − ri and rjk = rk − rj .
Sometimes this is augmented by an additional term that fixes a distance rub
between the atoms (i , k) (Urey-Bradley term)

Ubond angle(θ) =
1
2
kθ(θ − θ0)2 +

1
2
kub(rik − rub)2 (7)

Then there is the four-body torsion or dihedral angle potential. Note that a given
(i , j , k, l)-quadruple of atoms contributes multiple terms to the potential, each
with its own set of parameterization

Udihedral =

{
k(1 + cos(nψ + φ)) if n > 0,

(ψ + φ)2 if n = 0
(8)

The potential is between the planes formed by the first three and last three atoms
of a consecutively bonded (i , j , k, l)-quadruple of atoms. ψ is the angle between
the (i , j , k)-plane and the (j , k, l)-plane. φ is the phase shift angle.

18 / 169

Force Fields VI

Non-bonded potential energy terms (Inter): Here we find potentials like van-der
Waals, electrostatic, etc. These involve (in general) interactions between all
(i , j)-pairs of atoms.

The hard sphere potential describes the purely repulsive part of an interaction
representing the excluded volume of the atom or particle

UHC(rij) =

{
∞ rij ≤ σ
0 rij > σ .

(9)

Here rij = ||rj − ri || and σ is the excluded volume.

19 / 169

Force Fields VII

��

����

����

����

����

��

�� ���� �� ���� ��

�
��
�

�

�������������������������������

Figure 8: Excluded volume potential as described in Equation. 9.

20 / 169

Force Fields VIII

Another possible excluded volume interaction is given by the WCA
(Weeks-Chandler-Andersen) potential [14], which was designed to model excluded
volume interactions by a short-range repulsive force. The WCA potential is
basically a truncated and shifted Lennard-Jones potential with the following
functional form,

UWCA(r) =

4ε
((

σ
r

)12 −
(
σ
r

)6
+ cshift

)
r < rcut

0 r ≥ rcut
(10)

Here rcut = 21/6 and cshift = 1
4 are chosen such that the minimum of the

potential is UWCA(rmin) = 0, the attractive part of the Lennard-Jones interaction
being cut off. The WCA potential has two parameters ε and σ. σ defines the
radius of the monomers’ hard core. ε controls the energy penalty of another
monomer penetrating this hard core.

21 / 169

Force Fields IX

-1.5x10-5

-1x10-5

-5x10-6

 0

 5x10-6

 1x10-5

 0 0.5 1 1.5 2

WCA
LJ

Figure 9: Weeks-Chandler-Andersen potential as well as the Lennard-Jones potential

22 / 169

Force Fields X

The Lennard-Jones potential [15, 16] accounts for an excluded volume as well as
for the weak dipole attraction between two atoms, i.e. due to instantaneous
dipoles that arise during the fluctuations in the electron cloud

ULJ(rij) = 4ε

((
σ

rij

)12
−
(
σ

rij

)6
)

rij ∈ [0,∞] (11)

Here rij = ||rj − ri ||. ε is the energy parameter and σ sets the length scale, i.e.
the van der Waals radius of the atom (particle). Typical values are

atom ε σ

H 8.6 2.81
N 37.3 3.31
O 61.6 2.95

Table 1: Energy ε given in 1.38066× 1023J and length σ given in 10−1nm

23 / 169

Force Fields XI

More generally we have

ULJ(rij) = 4αε
((

σ

rij

)n

−
(
σ

rij

)m)
rij ∈ [0,∞] (12)

with n,m ∈ N(n > m) and α = 1
n−m

(
nn

mm

) 1
n−m . This potential is continuous and

differentiable (C∞)

Often the Lennard-Jones potential is truncated and shifted. For this the value at
rc = 2.5σ is taken

ULJ(rc) = 4ε

((
σ

rc

)12
−
(
σ

rc

)6
)
≈ −0.0163ε (13)

ULJ-trunc(r) =

{
ULJ(r)− ULJ(rc) if r ≤ rc ,

0 if r > rc .
(14)

This removes the discontinuity at rc . T5he truncation though does effect the
some properties like the location of phase transition points.

24 / 169

Force Fields XII

����

��

����

��

����

��

����

��

�� ���� �� ���� �� ���� ��
����

��

����

��

����

��

����

��

�
��
�

�
��
�

�

�����������������������
�������������������

Figure 10: Lennard-Jones potential as described in Equation 12.

25 / 169

Force Fields XIII

In the above we have assumed that all atoms (particles) are identical. For unlike
pairs (ij) of atoms we need to define combination rules for the energy scale ε and
the excluded volume σ:

εij =
√
εi εj σij =

√
σiσj

εij =
√
εi εj σij =

σi + σj

2

εij =
2σ3

i σ
3
j
√
εi εj

σ6
i + σ6

j

σij =

(
σ6
i + σ6

j

2

)1/6

.

(15)

26 / 169

Force Fields XIV

The electrostatic potential or Coulomb potential is repulsive for atomic charges
q1, q2 with the same sign and attractive for atomic charges with opposite signs
between two atoms (particles) (i , j).

UC(rij) =
q1q2

4πε0

1
rij

rij ∈ [0,∞] (16)

Here rij = ||rj − ri ||.

27 / 169

Force Fields XV

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

U
(r

)

F
(r

)

r

Coulomb Potential
Coulomb Force

Figure 11: Lennard-Jones potential as described in Equation 16.

28 / 169

Force Fields XVI

The CHARMM force field [17] (here the CHARMM22 version) combines intra and
inter atomic (molecular) potentials:

H =
∑

bonds

kb (b − b0)2 +
∑

angles

kθ (θ − θ0)2 +
∑

dihedrals

kφ [1 + cos (nφ− δ)]

+
∑

impropers

kω (ω − ω0)2 +
∑

Urey−Bradley

kub (rik − rub)2

+
∑

nonbonded

ε

[(
σij

rij

)12
−
(
σij

rij

)6
]

+
qiqj

εrij
(17)

Here b = ||rj − ri || is the bond length. The non-bonded potentials are only applied to
pairs separated by at least three bonds (intra-molecular potential) and to all other
atoms (inter-molecular potential).

29 / 169

Force Fields: Empirical Potential I

Empirical potentials provide a way to specify for example the interactions in proteins.
Specifically for proteins, the base for deriving potentials are protein databases. On the
one hand these provide indeed through NMR or other experimental methods data on
interatomic relations. Many structures are deposited daily. On the other hand, only
those that have more or less fixed structure enter the data base. Proteins like the
intrinsically disordered proteins (IDP’s) do not, thus biasing the results. Hence implicit
is the assumption that the set we are looking at represents the full spectrum of
energies.

We will see below, that most of the time pair potentials are derived. This certainly is
an assumption that may not apply. From solid state theory we know that certain
crystal structures can not be obtained from pair potentials and require many body
potentials.

Assume two atoms or particles A and B separated by a distance r . Then the
probability P for finding them at distance r is given by

PAB(r) =
1
Z
e−βUAB (r) . (18)

where β = 1/kT and Z is a normalizing constant

30 / 169

Force Fields: Empirical Potential II

Z =

∫ ∞
0

e−βUAB (r)dr . (19)

Given a set of structures in a database like for example the protein database, a
histogram of the distances that one finds in the database between A and B can be
used to get an estimate of PAB . Taking the logarithm of Equation 19 we obtain

lnPAB = −βUAB(r)− lnZ . (20)

Since the constant lnZ is irrelevant we find the specific interaction potential. One can
normalize this with the probability Pa for any pair

UAB(r) = −kT lnPAB/ lnPa(r) . (21)

Clearly we need to ask, whether in the calculation of UAB we include every occurrence
of pairs AB or whether specific relations along the backbone of the protein need to be
considered.

Also, we need to discretize the distances to ensure a sufficient statistics.

31 / 169

Force Fields: Empirical Potential III

Figure 12: Empirical potential taken from Structure-derived potentials and protein simulations
by Jernigan and Bahar [18].

32 / 169

Force Fields: Empirical Potential IV

Example

The H2AX protein (shown in Figure 13, Histone H2AX - P27661 (H2AX_MOUSE))
consists of 143 residues. It is a phosphorylated variant of histone H2A and associated
with DNA damage. In this example the residues are mapped to a lattice model. To
nevertheless capture specificity of each residue a residue-residue interaction and
excluded volume constraints are implemented. Each residue interacts with the
neighboring residues within a range of interaction using a generalized Lennard-Jones
potential

U(r) = |εij |
(
σ

rij

)12
+ εij

(
σ

rij

)6
for rij ≤ rc (22)

where the εij ’s are parameterizations for Equation 21 using X-ray crystallographic
data [19] on a large number of protein structures from the protein data bank.

33 / 169

Force Fields: Empirical Potential V

Figure 13: The left panel shows the ribbon images of H2AX. The right panel shows the
contact probability between the residues at a specific temperature. Right panel image taken
from Fritsche et. al. [20].

34 / 169

Force Fields: Non-Bonded Potential

Let’s discuss the calculation of the potential which requires a summation over all
unique pairs. The simplest algorithm doing so is to use a double loop. This is the
most simplest realization of the Nearest Neighbor Search (NNS), i.e., find the k
points that are closest to a given test point by the Euclidian distance metric.

Because of the double loop the algorithm will scale with number of particles N as N2.
This is because for every particle we need to run through the entire list of particles to
calculate the distance. If the potential is such that it is of finite range, then this is
clearly not efficient. Later we will discuss more efficient algorithms.

1 /**
* Force calculation

3 */
void forceCalculation(float x[], float y[], float z[],

5 float fx[],float fy[],float fz[],
float rcoffs ,float *potential ,

7 float *virial , float side) {
int i,j;

9 float xi ,yi,zi;
float rd , rd2 , rd3 , rd4 , rd6 , rd7;

11 float r148;
float kx ,ky,kz;

35 / 169

Force Fields: Non-Bonded Potential

for (i = 0; i < 1; i++) {
2 for (j = i+1; j < 3; j++) {

xi = x[i] - x[j];
4 yi = y[i] - y[j];

zi = z[i] - z[j];
6 minimumImage (&xi ,&yi ,&zi,side);

rd = xi*xi + yi*yi + zi*zi;
8 if (rd < rcoffs) {

rd2 = rd * rd;
10 rd3 = rd * rd2;

rd4 = rd2 * rd2;
12 rd6 = rd2 * rd4;

rd7 = rd3 * rd4;
14 *potential += ((1.0 /rd6) - (1.0 / rd3));

r148 = (1.0 / rd7) - (1.0 / rd4) * (float).5;
16 *virial -= rd * r148;

kx = x[i] * r148;
18 fx[i] += kx;

fx[j] -= kx;
20 ky = y[i] * r148;

fy[i] += ky;
22 fy[j] -= ky;

kz = z[i] * r148;
24 fz[i] += kz;

fz[j] -= kz;
26 }

}
28 }

}
36 / 169

Nearest-Neighbor Search I

Nearest-neighbor search, i.e., given a query point q, the task is to search for the k

closest points to q among all points in a dataset.

Linear search

Space partitioning (data structure): The nearest neighbor search algorithms differ
in their space-partitioning methods that split space using hyper-triangular or
hyper-spherical bounding boxes, and build up a search tree on the resulting
hierarchy of partitions. For the set of points, the root contains the entire search
space, ie. all the points. This is then split into two partitions, depending on
geometric shape. KD-trees and R-trees use rectangular shaped partitions. An
alternative are metric-trees e.g. ball-tree [21, 22], in which the space partitioning
is specifically optimized for the euclidean distance function.

37 / 169

Nearest-Neighbor Search II

Algorithm 1 Space Partitioning Algorithm

1: Compute the centroid or center of mass of the points.
2: Assign all points to the first partition
3: while points in partition do
4: Compute the farthest point from center of mass in the partition as the centroid

of the first sub-partition
5: Select the farthest point from the first one as the centroid of the second sub-

partition
6: end while

Note that this construction can lead to an unbalanced tree. The ideas listed
below all use this basic algorithm differing in the implementation of the geometric
shape of the partition, the space-partitioning strategy to build the search tree and
the algorithm exploit the data structure.

Euclidean Minimum Spanning Tree (EMST)

38 / 169

Nearest-Neighbor Search III

Ball-tree [21, 22]: A ball-tree is an efficient metric-tree for euclidean distances. Each
node in the ball-tree referred as ball contains a region of Euclidean points bounded
by a hyper-sphere and interior balls are small containing their children balls. top
down approach for building the tree recursively from top to down by choosing the
split dimension and splitting value to find these values, balls are sorted along each
dimension and store the cost in an array. Best dimension and split location can be
found in O(n log(n)), so, time complexity to construct the ball-tree is O(n(log n)2).
KD-tree [23]: A KD-tree is a generalization of binary trees, in which each internal
node represents a rectangular partition of space and its subtree contains all data
points that fall in the rectangle.
quad-tree and oct-tree [24] Here the space is partitioned into four congurent
squared and in the case of the oct-tree in three dimensions into eight cubes.

39 / 169

Nearest-Neighbor Search IV

Figure 14: Example of a quad-tree space partitioning data structure. Shown is the
space partitioning for the red particle, if only the black ones exist and that there is a
finite cut-off of the potential consistent with the length scale of the last partitioning.

40 / 169

Nearest-Neighbor Search V

R-tree [25] and R*-tree [26]
Verlet table (Fixed-radius near neighbors)

Ewald summation

41 / 169

Molecular Dynamics

Molecular Dynamics I

The starting point for the Molecular Dynamics (MD) simulation [2, 3, 27–31] is thus a
well-defined force field. Using Hamiltonian, Lagrangian or Newton’s equations of
motion these are approximated by suitable schemes Ψ such that they can be solved
numerically.

We start the development with a Hamiltonian formulation with coordinates r and
momenta p

H(r , p) =
1
2
pTM−1p + U(r) . (23)

Here M is the mass tensor. From this Hamiltonian we get the equations of motion

d

dt
r = −

∂

∂r
H (24)

d

dt
p =

∂

∂p
H . (25)

An important consideration for any numerical integration scheme is that we want to
conserve as many quantities during a numerical evaluation as possible that are

42 / 169

Molecular Dynamics II

conserved due to symmetries etc. This leads us to the concept of symplectic methods.
Symplectic methods preserve certain abstract invariants of Hamiltonian
systems [32–34] and are stable for linear systems for sufficiently small values of the
step size.

We denote the trajectory that we want to generate by Γ

Γ(t) =
(r
p

)
. (26)

Then this trajectory obeys the equation of motion

d

dt
Γ = J∇H(Γ) (27)

J =

(
0 I

−I 0

)
, (28)

where I denotes the unit matrix.

We compute an observable A along the trajectories and hence average along the states
we find along the path

43 / 169

Molecular Dynamics III

〈A〉 =
1

nobs

nobs∑
ν=1

A(Γν(t)) . (29)

Here nobs is the number observations we took, i.e., how many iterations we took in
the numerical integration of the equations of motion.

Let ρ0(Γ) denote the probability density at time t = 0: Γ(0) = ρ0(Γ) and let ρ(Γ, t)

denote the probability density for Γ(t). Then we have the Liouville theorem for the
trajectories.

ρ(Γ, 0) = ρ0 (30)

ρt +∇ · (ρJ∇H) = 0 . (31)

This states that the flow in phase space is that of an incompressible fluid.

If ρt = 0, then

∇H · J · ∇ρ = 0 (32)

44 / 169

Molecular Dynamics IV

and with this

ρ(Γ) =
e−H(Γ)/kBT∫
e−H(Γ)/kBTdΓ

. (33)

Now let Ψ be a numerical integrator, i.e. a discretization of the equations of motion

Γn+1 = Ψ(Γn) , (34)

then the phase space volume needs to be conserved

det ∂ΓΨ(Γ) = 1 . (35)

The integrator is sympletic, if

(∂ΓΨ(Γ)T J(∂ΓΨ(Γ) = J (36)

i.e. phase space volume and the energy is conserved.

45 / 169

Molecular Dynamics: Discretization I

The most straightforward discretization of the equations of motion that involve
differentials comes from the Taylor expansion. The idea is to base the algorithm on a
discrete version of the differential operator. With suitable assumptions we can expand
the variable r in a Taylor series

r(t + ∆t) = r(t) +

n−1∑
i=1

∆i t

i!
r (i)(t) + Rn . (37)

where Rn gives the error involved in the approximation.

Using the forward t + ∆t and the backward difference t −∆t

r(t + ∆t) = r(t) + v(t)∆t +
F (t)

2m
∆2t +

d3r

dt3
∆3t

3!
+ R4 (38)

r(t −∆t) = r(t)− v(t)∆t +
F (t)

2m
∆2t −

d3r

dt3
∆3t

3!
+ R4 . (39)

If we add the two equations, we obtain

46 / 169

Molecular Dynamics: Discretization II

r(t + ∆t) = 2r(t)− r(t −∆t) +
F (t)

2m
∆2t + R∗4 . (40)

If we subtract the two equations we obtain

r(t + ∆t) + r(t −∆t) = 2v(t)∆t + R∗3 (41)

and hence an estimator for the velocity

v(t) =
r(t + ∆t) + r(t −∆t)

2∆t
+ R∗2 . (42)

The estimator for the position and the velocity together comprise what is known as
the Verlet algorithm [31]. The Verlet algorithm is a second-order method that is
indeed symplectic.

So, much hinges on the simulation step-size, since this determines the time-scales,
that we can cover. As we have seen above the choice of step size is dominated by
stability demands and not by accuracy demands.

47 / 169

Molecular Dynamics: Basic Algorithm

Algorithm 2 Molecular Dynamics Algorithm

1: n = 0
2: Specify positions r−1

i and r0i
3: Set ∆t

4: while n 6= maxSteps do
5: Compute the forces at time step n: F n

i

6: Compute the positions at time step n + 1 rn+1
i

7: Compute the velocities at time step n: vn
i

8: n = n + 1
9: end while

Note that in this formulation of the molecular dynamics algorithm we need two
starting positions, rather than position and velocity!

48 / 169

Molecular Dynamics: Boundary Conditions I

The computational volume is given by

Ω = (a1, b1)× . . .× (ad , bd) ⊂ Rd (43)

where here for simplicity we assume

bi − ai = L, ai , bi ∈ R (44)

Of course, more complicated situations may be considered.

L

L

49 / 169

Molecular Dynamics: Boundary Conditions

F : Ω→ R

∀r = (x1, . . . , xd) ∈ Ω, i = 1, . . . , d :

F (x1, . . . , xi−1, ai , xi+1, . . . , xd) = F (x1, . . . , xi−1, bi , xi+1, . . . , xd) (45)

Image

Image

Image

Image

Image

Image

Image

Image

50 / 169

Molecular Dynamics: Boundary Conditions

1 /**
* Periodic boundary conditions

3 */
void applyPeriodicBoundary(float x[], float y[], float z[],float side) {

5 for (int n = 0; n < N; n++) {
if (x[n] < 0) x[n] += side;

7 if (x[n] > side) x[n] -= side;
if (y[n] < 0) y[n] += side;

9 if (y[n] > side) y[n] -= side;
if (z[n] < 0) z[n] += side;

11 if (z[n] > side) z[n] -= side;
}

13 }

51 / 169

Molecular Dynamics: Boundary Condition

Algorithm 3 Minimum Image Criterion (here for d = 1)

1: dx = xj − xi
2: if dx > L * 0.5) then
3: dx = dx - L
4: end if
5: if dx <= -L * 0.5 then
6: dx = dx + L
7: end if

Image

Image

Image

Image

Image

Image

Image

Image

Minimum Image

52 / 169

Molecular Dynamics: Boundary Condition

1 /**
* Minimum image convention

3 */
void minimumImage(float* xi, float* yi, float* zi ,float side){

5 float sideh;
sideh = side * 0.5;

7 if (*xi < -sideh) { *xi += side;}
if (*xi > sideh) { *xi -= side;}

9 if (*yi < -sideh) { *yi += side;}
if (*yi > sideh) { *yi -= side;}

11 if (*zi < -sideh) { *zi += side;}
if (*zi > sideh) { *zi -= side;}

13 }

53 / 169

Molecular Dynamics: Verlet Algorithm

The Verlet algorithm can be reformulated in such a way as to give a numerically more
stable method [35, 36]. Define

zni =
rn+1
i − rni

h
(46)

The equations

rni = rn−1
i + hzn−1

i

zni = zn−1
i + hF n

i /m (47)

are called the summed form. A further reformulation yields the velocity form of the
Verlet algorithm.

54 / 169

Molecular Dynamics

Algorithm 4 Molecular Dynamics Algorithm: NVE Velocity Form

1: n = 1
2: Set ∆t

3: Specify the initial positions r0i , r
1
i

4: Specify the initial velocities v0
i , v

1
i

5: Compute the forces F 1
i

6: while n 6= maxSteps do
7: rn+1

i = 2rni − rn−1
i + F n

i h
2/m

8: Compute F n+1
i

9: vn+1
i = vn

i + h(F n+1
i + F n

i)/m

10: n = n + 1
11: end while

55 / 169

Molecular Dynamics: Constant Temperature I

One way of achieving energy fluctuations for a constant temperature is to supplement
the equations of motion with an equation of constraint. Alternatively one can add to
the forces in the equations of motion a force of constraint (damped-force method)
[37–42]. It can be shown [43] that the damped-force method is a special case of the
constraint method. Another possibility is that of immersing the system in a heat bath
by introducing a stochastic force simulating collisions with virtual particles. Later we
take up the idea of stochastic supplements to the equations of motion. A natural
choice for the constraint is to fix the kinetic energy to a given value during the course
of a simulation. Such a constraint may be the non-holonomic constraint [43]

Λ =
1
2

∑
i

mv2
i = const (48)

(isokinetic MD) or one may take the total kinetic energy proportional to time with a
vanishing proportionality constant if the system has reached a constant temperature
(Gaussian isokinetic MD) [44]

1
2

∑
i

mv2
i = αt (49)

56 / 169

Molecular Dynamics: Constant Temperature II

β =

[
(3N − 4)kBTref/

∑
i

mv2
i

]1/2

(50)

so that after the scaling step we have

1
2

∑
i

mv2
i =

1
2

(3N − 4)kBTref . (51)

57 / 169

Molecular Dynamics: Constant Temperature

Algorithm 5 Molecular Dynamics Algorithm: NVT

1: n = 1
2: Set ∆t

3: Specify the initial positions r1i
4: Specify the initial velocities v1

i

5: Compute the forces F 1
i

6: while n 6= maxSteps do
7: rn+1

i = rni + hvn
i + h2F n

i /2m
8: vn+1

i = vn
i + h(F n+1

i + F n
i)/2m

9: Compute
∑

i (v
n+1
i)2 and the scaling factor β.

10: Scale all velocities vn+1
i → vn+1

i β

11: n = n + 1
12: end while

58 / 169

Molecular Dynamics: Constant Pressure I

For the isolated N-particle system the energy E and the volume V are the
independent variables. If we fix the pressure, then the volume, being the variable
conjugate to the pressure, must be allowed to fluctuate. For a constant particle
number N and constant pressure P, the enthalpy H is conserved

H = E + PV . (52)

To make the volume fluctuations possible we introduce the volume V as a new
dynamical variable. As such it is also assigned a mass M. To develop equations of
motion for the particles and the volume we further take PV as the potential energy
corresponding to the new dynamic variable [45–47]. The Lagrangian now looks like

L(r , ṙ ,V , V̇) =
1
2

∑
i

mṙ2i − U(r) +
1
2
MV̇ + PEV . (53)

Of course, the variables r and V are not coupled. To proceed we appeal to intuition.
If the system is subjected to pressure, the distances between the particles will change.
Conversely, if the distances change, the pressure changes. The crucial step is the
replacement of the coordinates ri of the particles by the scaled coordinates ρi i.e.,

59 / 169

Molecular Dynamics: Constant Pressure II

ρi =
ri

V 1/3 =
ri

L
. (54)

Now all components of the position vectors of the particles are dimensionless numbers
within the unit interval [0, 1]. With the transformation, the integrals of ri over the
fluctuating volume V become integrals of ρi over the unit cube. Having written down
(54) we have made the implicit assumption that each spatial point responds in the
same way. Due to this, there is no consistent physical interpretation of the approach.

The equation (54) couples the dynamical variables r to the volume. Taking the first
time derivative we obtain

ṙi = Lρ̇i + ρL̇ . (55)

In equilibrium, the changes in the volume can be regarded as slow. Therefore we may
assume

pi

m
= Lρ̇i (56)

as the momentum conjugate to ρi and the Lagrangian becomes

60 / 169

Molecular Dynamics: Constant Pressure III

L(ρ, ρ̇,V , V̇) =
1
2
L2
∑
i

mρ̇2
i − U(Lρ) +

1
2
MV̇ 2 − PEV . (57)

Recall that we anticipate possible effects on the intrinsic dynamics when we modify
the equations. However, the static properties should not be affected. Concerning this
point, note that the potential energy does not involve the new coordinates ρ but the
true r . In a somewhat loose way the Hamiltonian of the system is formulated
as [48, 49]

H =
1
2
L2
∑
i

mρ̇2
i + U(Lρ) +

1
2
MV̇ 2 + PEV . (58)

Here M is still a free parameter, about which we will have more to say later. Having
set up the Hamiltonian the next task is to derive the equations of motion for the
particles and the volume. These equations will now be coupled. In the Newtonian
formulation they are

61 / 169

Molecular Dynamics: Constant Pressure IV

d2ρ̇i

dt2
=

Fi

mL
−

2
3
ρ̇i

(
V̇

V

)
,

d2V

dt2
=

P − PE

M
(59)

with the pressure P computed from the virial

P =
1
3L

∑
i

mρ̇2
i +

∑
i<j

rijFij

 . (60)

62 / 169

Molecular Dynamics: Constant Pressure I

Algorithm 6 Molecular Dynamics Algorithm: NVT

1: n = 1
2: Set ∆t

3: Specify the initial positions r1i
4: Specify the initial velocities v1

i

5: Specify an initial volume V 0 consistent with the required density
6: Specify an initial velocity for the volume
7: Compute the forces F 1

i

8: while n 6= maxSteps do
9: Compute ρn+1 and V n+1

10: rn+1
i = rni + hvn

i + h2F n
i /2m

11: vn+1
i = vn

i + h(F n+1
i + F n

i)/2m
12: Compute the pressure Pn+1

13: n = n + 1
14: end while

63 / 169

Langevin Dynamics

Langevin Dynamics I

Another approach to understand how structure arises is to model part of the system
chemically as realistic as possible and take the interaction of atoms with the
environment into account only through their stochastic influence. For example, the
water molecules and all other possible solvent molecules are not explicitly taken into
account.

Figure 15: H2AX protein with solvants

64 / 169

Langevin Dynamics I

Thus we start off with a Langevin equation [50]

Mr̈ + ηṙ +∇V = ξ(t) , (61)

where M is the mass matrix, η the damping matrix and ξ a normalized white noise
resulting from a Wiener process.

Because of the independence of the coordinates, the Langevin equation (61) only
depends on the covariance matrix of the noise ξ(t) = DẆ (t) (here D is the diffusion
matrix and W a Wiener process)

DDT = 〈ξξTdt〉 . (62)

The fluctuation-dissipation theorem relates the diffusion matrix to the damping matrix
and the temperature

DDT = 2kBTη . (63)

65 / 169

Langevin Dynamics II

Because of the lack of knowledge of the detailed damping a further reduction in
complexity is usual taken by setting the damping matrix proportional to the mass
matrix

η = γM (64)

with a damping constant γ. We then get

D = (2kBTγM)1/2 . (65)

Let ∆E be the energy barrier which the molecule has to take to get to a new state.
Then the activation energy can be related to the mean frequency of transition f by an
Arrhenius law, i.e., the rate increases exponentially with the absolute temperature

f =
kBT

h
exp

(
−

∆E

kBT

)
(66)

where h is the Plank constant.

We shall now assume that we are at low temperatures, where the motions of the
involved atoms are small. The protein is further assumed in a local minimum xmin and

66 / 169

Langevin Dynamics III

we are interested in the high frequency modes. The highest frequencies are of the
order of 1014 sec (roughly the C-H bond vibrations).

For simplicity we shall also assume that the eigenmodes are non-degenerate. Then we
can expand the potential up to second order

V (r) ≈ V (rmin) +
1
2

(r − rmin)T V̄ (r − rmin) (67)

where V̄ = ∇2V (rmin). Ignoring in the limit of low temperature and high frequency
the damping and the random force term we obtain

Mr̈ + V̄ (r − rmin) = 0 (68)

with the general solution

r = rmin +
∑
l

ul exp(iωl t) . (69)

Here ωl are the frequencies and ul are the normal modes.

67 / 169

Monte Carlo Method

Monte Carlo Method I

What are Monte Carlo Methods?

In the widest sense of the term, Monte Carlo (MC) simulations mean any
simulation (not even necessarily a computer simulation) that utilizes random
numbers in the simulation algorithm.

Monte Carlo simulations are statistical and non-deterministic. Hence each
simulation will give a different result, but the results will be related via some
statistical error.

The Monte Carlo algorithm was named the top algorithm of the 20th century by
mathematicians and physicists.

Why do we need this?

Multidimensional integrals
Systems with a large number of degrees of freedom

Many atoms in a gas, liquid, solid
Many electrons in an atom
Gene expression
Networks
...

68 / 169

Monte Carlo Method: Typical Parts I

Typical Parts of a Monte Carlo Method

Probability Distribution Functions

Random Number Generator

Sampling Rule

Evaluating

Error Estimation

Bayes Theorem

Let A and B be events

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ā)P(Ā)
(70)

=
P(B|A)P(A)

P(B)
. (71)

69 / 169

Random Numbers I

Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.
John Von Neumann, 1951

Intuitively, we can list a number of criteria that a sequence of numbers must fulfill to
pass as a random number sequence:

unpredictability,

independence,

without pattern.

These criteria appear to be the minimum request for an algorithm to produce random
numbers. More precisely we can formulate:

uniform distribution,

uncorrelated,

passes every test of randomness,

large period before the sequence repeats (see later),

sequence repeatable and possibility to vary starting values,

70 / 169

Random Numbers II

fast algorithm.

The most common generators use very basic operations and apply them repeatedly on
the numbers generated in previous steps. We formulate this as a recursion relation

xi+1 = G(xi), x0 = initial value , (72)

where we have made explicit only the dependence on the immediate predecessor. The
most important representatives of this class of generators are the

linear congruential,

lagged Fibonacci,

shift-register or a

combination of linear congruential.

71 / 169

Random Numbers III

Linear Congruential Generators

A very simple generator is constructed using the modulo function.

G(x) = (xa + b) mod M . (73)

This function produces a dilatation, translation and a folding back into the interval.
Random number generators based on this function are called linear congruential
generators or LCG(a,b,M) for short. If we assume integers as the set on which the
modulo function is defined, then for example, the range of integer numbers for a
32-bit architecture is at most M = 231 − 1. Here we assume that one bit is taken for
the sign of the number. Then the numbers range at most from 0 to M − 1. Of course,
we can map these onto the real interval between 0 and 1, recognizing that this is an
approximation to the real-valued random numbers.

Inverse Congruential Generators

A very simple generator is constructed using the modulo function.

xn+1 = (x−1
n a + b) mod M , (74)

72 / 169

Random Numbers IV

where x−1
n is the multiplicative inverse of xn in the integers modm with 0−1 defined

as 0.

The choice of the parameters a, b and M determine the statistical properties and
how many different numbers we can expect before the sequence repeats itself.

The period can be shown to be maximal, if M is chosen to be a prime number.
Then the whole range of numbers occurs.

Here we only consider modulo generators with b = 0.

Such generators are called multiplicative and the short form MLCG(a,M) is used
for such generators.

These are the most commonly used, since one can show that additive generators,
i.e. generators with b in general non zero have undesirable statistical properties.

The choices for the parameter a are manifold. For example a = 16807,
630360016 or 397204094 are possible choices with M = 231 − 1.

73 / 169

Random Numbers V Page 1 of 1MOD.C
Printed For: Heermann

/*-- */
/* Modulo Generator */
/*-- */
int ModGenerator(modul,multi,inc,seed,max_sweeps,x)
 int modul;
 int multi;
 int inc;
 int seed;
 int max_sweeps;
 float *x;
{
 /*-- */
 /* Declarations */
 /*-- */
 int i;
 double r;
 double factor, increment, modulus;
 /*-- */
 /* End of declares */
 /*-- */

 r = (double) seed;
 factor = (double) multi;
 increment = (double) inc;
 modulus = (double) modul;

 for(i=0; i< max_sweeps; i++) {
 r=fmod(r*factor + increment,modulus);
 x[i] = (float) r / modulus;
 }
 return 0;
}

Figure 16: C source for a modulo random number generator

74 / 169

Random Numbers VI Page 1 of 1ranf.c

#include <stdlib.h>
int iseed, randInt;
float randFloat;

srand(iseed);
randInt = rand();
randFloat = (float) randInt / (float) RAND MAX;

Figure 17: C source for the implicit modulo random number generator

Add-with-Carry/Subtract-with-Carry Generators

Add-with-carry and subtract-with-carry generators rely on two numbers, the carry
c and the modular base M.

Add-with-carry generator

xn+1 = (xn−s + xn−r + c) mod M (75)

Subtract-with-carry

xn+1 = (xn−s − xn−r − c) mod M (76)

Problems:

75 / 169

Random Numbers VII

Require an initial seed of a sufficiently long sequence.
Pairs (or triplets) of terms fall on planes (see modulo generator).

Fibonacci Generators

The lagged Fibonacci generator, symbolically denoted by LF(p,q,⊗) with p > q, is
based on a Fibonacci sequence of numbers with respect to an operation which we
have given the generic symbol ⊗.

Let S be the model set for the operation ⊗, for example the positive real numbers, the
positive integers, or the set S = {0, 1}. The binary operation ⊗ computes a new
number from previously generated numbers with a lag p

xn = xn−p ⊗ xn−q , p > q . (77)

To start the generator we need p numbers. These can be generated using for example
a modulo generator. The advantage of the lagged Fibonacci generator, apart from
removing some of the deficiencies that are build into the modulo type generators, is
that one can operate on the level of numbers or on the level of bits.

76 / 169

Random Numbers VIII Page 1 of 1FIBO.C
Printed For: Heermann

 for(i=0; i< max_sweeps; i++) {
 mf[p] = mf[p] + mf[q];
 if (mf[p] > 1) mf[p] -= 1;
 x[i] = mf[p];
 if (++p == lagP-1) p = 0;
 if (++q == lagP-1) q = 0;
 }

Figure 18: Fibonicci

In the following I have listed some lagged Fibonacci generators:

Recursion Relation Period
xi = xi−17 − xi−5 mod (2n) (217 − 1)2n−1

xi = xi−17 + xi−5 mod 2n (217 − 1)2n−1

xi = xi−31 − xi−13 mod 2n (231 − 1)2n−1

xi = xi−55 − xi−24 224(297 − 1) with 24 Bit Mantissa

For example, we can construct a generalized shift-register generator GFSR(p,q,⊗),
where the operation is interpreted as the exclusive or, which acts on every of the 32
bits in a computer word. This generator is also known under the name of R250.
(Follow this link to access the code for the R250.c)

77 / 169

http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C

Random Numbers IX

Page 1 of 2R250.C
Printed For: Heermann

include <math.h>
define RAND_MAX 2147483647

/*==*/
/* */
/* Random Number Generator: R 2 5 0 */
/* */
/* program version 1.0 for C */
/* Dieter W. Heermann */
/* may 1990 */
/*==*/

int init_r250(seed, m_f_ptr)
 int seed;
 int *m_f_ptr;
 {

 int i,tmp, dummy, one ;
 int *start;

 start = m_f_ptr;
 srand(seed);
 one = 1;

 /* warm up the usual random number generator */
 for (i=0; i< 100; i++)
 {dummy = rand();
 }

 /* now draw the 250 (251)initial bit sequences */
 for (i=0 ; i<251; i++)
 {*m_f_ptr++ = rand();
 }

 /* now orthogonalize as best as we can */
 m_f_ptr = start;
 for (i=0; i < 30; i++)
 { tmp = *m_f_ptr;
 *m_f_ptr = tmp | one;
 one = one << 1;
 m_f_ptr++;
 }

 return 0;
 }

int r250 (n, x_ptr, m_f_ptr, save)
 int n;
 float *x_ptr;
 int *m_f_ptr;
 int save;
 {

 int ind ;
 int j, min,k,ll;
 float *ran_ptr;

 ind = save;
 ll = n + 250;
 ran_ptr = x_ptr;
 j = 1;

Figure 19: The shift bit register generator R250

78 / 169

Non Uniform Distributions I

Let us turn to the generation of non-uniform distributions. First we look at the
normal or Gaussian distribution.

Typically algorithms generating non-uniform variates do so by converting uniform
variates.

In its most straightforward form a normal deviate x with mean < x > and
standard deviation σ is produced as follows:

Let n be an integer, determined by the needed accuracy. Then

sum n uniform random numbers ri from the interval (−1, 1):

sn =
n∑

i=1
ri

and let x =< x > +σsn
√

3.0/n .

79 / 169

Non Uniform Distributions II

Let G(x) be a function on the interval [a, b] with 0 < G(x) < 1 and f (x) the
probability distribution f (x) = a exp [−G(x)], where a is a constant.

Algorithm 7 Algorithm

1: Generate r from a uniform distribution on (0, 1)

2: Set x = a + (b − a)r

3: Calculate t = G(x)

4: Generate r1, r2, ..., rk from a uniform distribution on (0, 1) (k is determined from
the condition t > r1 > r2 > ... > rk−1 < rk)

5: if t < r1 then
6: k = 1
7: end if
8: if k is even then
9: reject x and go to 1

10: else
11: x is a sample
12: end if

80 / 169

Non Uniform Distributions III

An interesting method for generating normal variates is the polar method. It has the
advantage that two independent, normally distributed variates are produced with
practically no additional cost in computer time.

Algorithm 8 Polar Algorithm

1: Generate two independent random variables, U1,U2 from the interval (0, 1).
2: Set V1 = 2U1 − 1, V2 = 2U2 − 1
3: Compute| S = V 2

1 + V 2
2

4: if S ≥ 1 then
5: return to step 1
6: else
7: x1 = V1

√
−2 ln S/S

8: x2 = V2
√
−2 ln S/S

9: end if

81 / 169

Accept/Reject Method I

Another idea of converting one distribution into another is to accept or reject
drawn number for an initial distribution such that the accepted numbers have the
desired distribution.

Assume that we are given a uniform random number generator U ∼ (0, 1) and
X ∼ g .

We want to generate Y ∼ f .

Assume that there exists a constant c such that f (x) < cg(x) for all x .

Algorithm 9 Accept/Reject Algorithm

1: Generate X ∼ g

2: Generate U ∼ (0, 1)

3: if U ≤ f (X)/cg(X) then
4: Y = X

5: else
6: Goto 1
7: end if

82 / 169

Accept/Reject Method II

To proof that this is correct we show that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y) .

Note that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y)

P(U ≤ f (X)/cg(X))
=

∫ y
−∞

∫ f (x)/cg(x)
0 g(x)dudx∫∞

−∞
∫ f (x)/cg(x)
0 g(x)dudx

which simplifies to ∫ y

−∞
f (x)dx .

83 / 169

Gibbs-Sampler I

Assume x = (x1, x2) with target π(x)

Gibbs-Sampler Algorithm:

Algorithm 10 Gibbs Sampler Algorithm

1: initialize x0 = (x1
0 , x

2
0)

2: while i ≤ mcsmax do
3: sample x1

i ∼ π(x1|x2
i−1)

4: sample x2
i ∼ π(x2|x1

i)

5: end while

{x1, x2} is a Markov chain.

84 / 169

Gibbs-Sampler I

Generalization: x = (x1, ..., xp), p > 2

Algorithm 11 Generalized Gibbs Sampler Algorithm

1: initialize x0 = (x1, ..., xp)

2: while i ≤ mcsmax do
3: for k = 1→ p do
4: sample xki ∼ π(xk |x−k

i)

5: end for
6: end while

where x−k
i = (x1

i , ..., x
k−1
i , xk+1

i−1 , ..., x
p
i−1).

85 / 169

Sampling from an Empirical Distribution

1 from scipy.interpolate import interp1d
from statsmodels.distributions.empirical_distribution import ECDF

3 import numpy as np
import matplotlib.pyplot as plt

5 from matplotlib.backends.backend_pdf import PdfPages

7 # assign parameter values
seed = 4711

9 mu1 , sigma1 = 100, 25
mu2 , sigma2 = 150, 10

11 sample_size = 10000

13 np.random.seed(seed)
x1 = mu1 + sigma1 * np.random.randn(sample_size)

15 x2 = mu2 + sigma2 * np.random.randn(sample_size)
x = np.concatenate ((x1 ,x2))

17
create empirical distribution

19 ecdf = ECDF(x)
inv_cdf = interp1d(ecdf.y, ecdf.x, bounds_error=False , assume_sorted=False)

21
Sample the empirical distribution

23 r = np.random.uniform(0, 1, 1000)
y_sample = inv_cdf(r)

86 / 169

Sampling from an Empirical Distribution I

0 25 50 75 100 125 150 175 200
x

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Pr

ob
ab

ilit
y

1 = 100, 1 = 25, 2 = 150, 2 = 10

Sample size = 10000

Empirical Distribution Approximation

Figure 20: Sampling of an empirical distribution

87 / 169

Monte Carlo Sampling I

Consider a state space S with states s ∈ S. We can generate a trajectory

τ = (s1, . . . , sn) (78)

of states from the state space S by, for example, uniformly drawing states from state
space. Consider further a property R(τ) that depends on the trajectory of length n

(see for example later section on machine learning where R is the return that we want
to optimize. Of course, n = 1 is possible.

What we are interested is to calculate the expectation of R under the probability s ∼ π

< R >= Es∼π[R(s)] . (79)

88 / 169

Markov Chain Monte Carlo I

A Markov chain is a sequence of random variables {xn; n ∈ N} which satisfies the
property

P(xn|x0, ...xn−1) = P(xn|xn−1) . (80)

Goal : Given a distribution π, construct transition probabilities P such that
asymptotically as n→∞

1
n

n∑
i=1

φ(xi)→
∫
φ(x)π(x)dx (81)

and

Xi ∼ π . (82)

Examples:

π(x) = Z−1 exp{−βH(x)}

89 / 169

Markov Chain Monte Carlo II

Autoregression for |α| < 1

Xn = αXn−1 + Vn,Vn ∼ N(0, σ2)

Here π(x) = N (x ; 0, σ2

1−α2)

Random Walk on a circle
The walker at time state i is in one of the four points
At state i + 1 the walker jumps to one of the two neighbours with probability p and
stays at the same point with probability 1− 2p.

Let P(xi+1|xi) =: Pxi ,xi+1 then

P =

1− 2p p 0 p

p 1− 2p p 0
0 p 1− 2p p

p 0 p 1− 2p

 , p ≤ 1/2

Px,y ≥ 0,
∑

y Pxy = 1

90 / 169

Markov Chain Monte Carlo III

Calculate Pn

lim
n→∞

Pn =

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 = π

a uniform distribution, as expected!

To develop Monte Carlo methods we want:

The desired distribution π to be a fixed point of the algorithm∫
P(x , y)πdx = π(y) . (83)

The successive distributions of the Markov chain converges towards π

The estimator 1
n

∑n
i φ(xi) converges and asymptotically Xn ∼ π .

For every π there exists infinitely many P that have π as there invariant
distribution.

How to choose a good one? Criterion: Rate of convergence.

Convergence ensured if the chain is irreducible, aperiodic and every state can be
reached.

91 / 169

Markov Chain Monte Carlo IV

We require:

Irreducibility: From any state we can go to any state

∀x , y ∈ S ∃n ∈ N, n > 0 : (Pn)xy > 0 . (84)

Aperiodicty

then, if P is irreducible and aperiodic we have

limn→∞ Pn = π .

if πy is not identically zero, then∑
y∈S

πy = 1,
∑
y∈S

πyPyx = πx . (85)

πx is a unique non-negative solution of the above equation and a probability
distribution on S.

If we know πx construct P such that πx is its equilibrium distribution. For this it is
enough to choose P such that

1
∑

y∈S πyPyx = πx

92 / 169

Markov Chain Monte Carlo V

2 P is irreducible and aperiodic

Replace (1) by the detailed balance condition

πyPyx = πxPxy . (86)

which implies (1).

93 / 169

Metropolis-Hastings Monte Carlo I

We will now construct an algorithm to that realizes a constant temperature ensemble,
i.e.

π(x) = Z−1 exp{−βH(x)} . (87)

The state space can for example be configurations of spins (see later Ising model),
positions of atoms in a liquid, polymers conformation etc.

Let P0 = {p(0)
xy } be a irreducible transition matrix.

We will use P0 to propose transitions from x to y .

These transitions will then either be accepted with a probability axy and rejected
1− axy .

94 / 169

Metropolis-Hastings Monte Carlo II

The complete transition matrix P is then constructed as:

pxy := p
(0)
xy axy if x 6= y ,

pxx := p
(0)
xx +

∑
x 6=y

p
(0)
xy (1− axy) [zero transition] ,

where ∀ x , y ∈ S : 0 ≤ axy ≤ 1 .

With this we have

axy

ayx
=
πyp

(0)
yx

πxp
(0)
xy

∀x , y ∈ S : x 6= y .

95 / 169

Metropolis-Hastings Monte Carlo III

If we use

axy := F

(
πyρ

(0)
yx

πxρ
(0)
xy

)
∀x , y ∈ S : x 6= y (88)

then

axy

ayx
=

F

(
πy p

(0)
yx

πxp
(0)
xy

)
F

(
πxp

(0)
xy

πy p
(0)
yx

) =
F (z)

F (1/z)

!
= z (89)

with

z :=
πxp

(0)
xy

πyp
(0)
yx

. (90)

The condition of detailed balance is satisfied if

∀z :
F (z)

F (1/z)

!
= z . (91)

96 / 169

Metropolis-Hastings Monte Carlo IV

Often used choices are

F (z) = min(z, 1) (92)

and

F (z) =
z

1 + z
. (93)

Note that the proposals of states need not to be symmetric. As a further point
we note that is was proven[51] that the choice F (z) = min(z, 1) is optimal in
that suitable candidates are rejected least often and hence statistical efficiency is
optimized

97 / 169

Metropolis-Hastings Monte Carlo Algorithm I

Algorithm 12 Metropolis-Hastings Monte Carlo Algorithm [1, 52]

1: for i=0; i < mcsmax do
2: sample a new state x ;
3: set y = xi ;
4: sample a uniform random number r from (0, 1);

5: if r ≤ min{
p0
xyπx

p0
x yπy

, 1} then
6: xi+1 = x ;
7: else
8: xi+1 = y ;
9: end if

10: end for

98 / 169

Error Analysis I

What does this mean if we calculate the time average of an observable A, which
by necessity can cover only a finite observation time?

Let us consider the statistical error for n successive observations Ai , i = 1, ..., n:

〈
(δA)2

〉
=

〈[
n−1

n∑
i=1

(Ai − 〈A〉)2
]〉

. (94)

In terms of the autocorrelation function for the observable A

φA(t) =
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
. (95)

We define two characteristic correlation times.

Exponential autocorrelation time

Typically we expect that (asymptotically, for large t) one gets an exponential
behavior

ΦA(t) ∝ exp
(
−

t

τA,exp

)
. (96)

We do expect, though, that the complete expression involves a sum over several
such terms; here we consider only the asymptotically most leading term with largest
autocorrelation time.

99 / 169

Error Analysis II

Integrated autocorrelation time

τ intA =

∫ ∞
0

φA(t)dt . (97)

We can rewrite the statistical error as〈
(δA)2

〉
∼=

2τA
nδt

[〈
A2〉− 〈A〉2] , (98)

where δt is the time between observations, i.e., nδt is the total observation time
τobs.

We notice that the error does not depend on the spacing between the
observations but on the total observation time.

Also the error is not the one which one would find if all observations were
independent.

The error is enhanced by the characteristic (integral) correlation time between
configurations.

Only an increase in the sample size and/or a reduction in the characteristic
correlation time τA can reduce the error.

100 / 169

Hamiltonian Monte Carlo I

In conventional Monte-Carlo (MC) calculations of condensed matter systems,
such as an N-particle system with a Hamiltonian H = U , only local moves
(displacement of a single particle) are made.

Updating more than one particle typically results in a prohibitively low average
acceptance probability 〈PA〉.

This implies large relaxation times and high autocorrelations especially for
macromolecular systems.

In a Molecular Dynamics (MD) simulation, with H = T + U , on the other hand,
global moves are made.

The MD scheme, however, is prone to errors and instabilities due to the finite
step size in time.

In order to introduce temperature in the microcanonical context, isokinetic MD
schemes are often used.

However, they do not yield the canonical probability distribution, unlike
Monte-Carlo calculations.

101 / 169

Hamiltonian Monte Carlo II

The Hybrid Monte-Carlo (HMC) method combines the advantages of Molecular
Dynamics and Monte-Carlo methods:

it allows for global moves (which essentially consist in integrating the system
through phase space);
HMC is an exact method, i.e., the ensemble averages do not depend on the step
size chosen;
algorithms derived from the method do not suffer from numerical instabilities due to
finite step size as MD algorithms do;
and temperature is incorporated in the correct statistical mechanical sense.

In the HMC scheme global moves can be made while keeping the average
acceptance probability 〈PA〉 high.

102 / 169

Hamiltonian Monte Carlo III

One global move in configuration space consists in integrating the system
through phase space for a fixed time t using some discretization scheme (δt
denotes the step size)

gδt : IR6N −→ IR6N

(x , p) −→ gδt(x , p) =: (x ′, p′)

of Hamilton’s equations

dx

dt
=

∂H
∂p

dp

dt
= −

∂H
∂x

. (99)

Since the system is moved deterministically through phase space, the conditional
probability of suggesting configuration x ′ starting at x is given by

pC (x → x ′)dx ′ = pC (p)dp . (100)

103 / 169

Hamiltonian Monte Carlo IV

The initial momenta are drawn from a Gaussian distribution at inverse
temperature β:

pC (p) ∝ e−β
∑N

j=1
p2j
2m . (101)

Thus

PA((x , p)→ gδt(x , p)) = min{1, e−βδH} , (102)

where

δH = H(gδt(x , p))−H(x , p)

is the discretization error associated with gδt . Using the algebraic identity

e−H(x,p) min{1, e−δH} = e−H(gδt (x,p)) min{eδH, 1} (103)

it can be shown that for a discretization scheme which is time-reversible

g−δt ◦ gδt = id (104)

104 / 169

Hamiltonian Monte Carlo V

and area-preserving

det
∂gδt(x , p)

∂(x , p)
= 1 , (105)

detailed balance is satisfied:

p(x)pM(x → x ′)dxdp = p(x)pC (p)PA((x , p)→ gδt(x , p))dxdp

= p(x ′)pC (p′)PA(gδt(x , p)→ (x , p))dxdp

= p(x ′)pC (p′)PA((x ′, p′)→ g−δt(x ′, p′))dxdp

= p(x ′)pC (p′)PA((x ′, p′)→ g−δt(x ′, p′))dx ′dp′

= p(x ′)pM(x ′ → x)dx ′dp′ .

Thus, provided the discretization scheme used is time-reversible and
area-preserving, the HMC algorithm generates a Markov chain with the
stationary probability distribution p(x).

The probability distribution is entirely determined by the detailed balance
condition.

105 / 169

Hamiltonian Monte Carlo VI

Therefore neither p(x) nor any ensemble averages depend on the step size δt
chosen.

However, the average acceptance probability 〈PA〉, because of (102), depends on
the average discretization error 〈δH〉 and hence does depend on δt.

It can be shown that for (%,T) 6= (%c ,Tc)

〈PA〉 = erfc(
1
2

√
β〈δH〉)

is a good approximation for sufficiently large systems (N → ∞) and small step
sizes (δt → 0).

From normalization and the area-preserving property one has

〈e−βδH〉 = 1 . (106)

Equation (106) can be expanded into cumulants

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉+ · · · .

In order to obtain a nonzero average acceptance probability 〈PA〉 in the limit
N → ∞ one has to let δt → 0, keeping 〈(δH− 〈δH〉)2〉 fixed.

106 / 169

Hamiltonian Monte Carlo VII

In this limit higher-order cumulants will vanish. The resulting distribution of the
discretization error will thus be gaussian with mean and width related through

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉 . (107)

From (102) and (107) one has in this case

〈PA〉 =
1√

2π〈(δH− 〈δH〉)2〉

∫ ∞
−∞

dtmin{1, e−βt}e
− (t−〈δH〉)2

2〈(δH−〈δH〉)2〉

= erfc(
1
2

√
β〈δH〉) . (108)

The square root in (108) is always well defined since (106) implies

〈δH〉 ≥ 0 .

Equality holds in the limit δt → 0, where energy is conserved exactly and
〈PA〉 = 1.

107 / 169

Hamiltonian Monte Carlo VIII

Increasing the step size will result in a lower average acceptance probability 〈PA〉.
Varying δt, the average acceptance probability 〈PA〉 can thus be adjusted to
minimize autocorrelations.

The momenta do not necessarily have to be drawn from the Gaussian distribution.

A particularly simple and computationally efficient alternative to would be a
uniform momentum distribution.

This choice, however, did not prove successful, since a cut-off has to be
introduced for computational reasons. This cut-off must be taken into account in
PA, leading to a very low average acceptance probability 〈PA〉.

It is clear that instead of choosing a discretization scheme of Hamilton’s
equations (99) any time-reversible and area-preserving discrete mapping can be
used to propagate the system through phase space.

108 / 169

Rejection-Free Monte Carlo I

So far, we have been using the rejection Monte Carlo algorithms. To remind us, the
algorithms proceeds from state x to possible state x ′ as outlined in Algorithm 13.

Algorithm 13 Accept/Reject Monte Carlo Algorithm

1: Choose initial state x

2: for n-of-samples do
3: Select a new state x ′

4: With probability p accept, i.e. set x = x ′

5: With probability (1− p), x ′ is rejected
6: end for

The probability will depend on some change induced by the state change

Construct algorithm that does not involve accept/reject, i.e. always accept

Thus, the methods will be (synchonously or asynchronously) event-driven [53]
(see Algorithm 14).

109 / 169

Rejection-Free Monte Carlo II

Algorithm 14 Event-Driven Algorithm

1: for n-of-samples do
2: Identify all possible events
3: Identify the event with the smallest time stamp ∆t

4: Set time t = t + ∆t

5: end for

Methods that rely on rates between states thus the sequence that ultimately will
be generated evolves in time (see Figure 21).

However, not as in the previous chapters systolically, driven by a constant
increment in time, but by leaps of various length in time.

This also opens up the possibility to make rigorous the notion of time in Monte
Carlo methods.

110 / 169

Rejection-Free Monte Carlo III

.

x

t

x

t

Figure 21: The lhs panel shows the typical systolic propagation of time for example in the
Metropolis Monte Carlo. Sometimes new state proposals are rejected (circles) and the previous
state is the new state. The rhs panel depicts the leaps in time that are made to achieve a
rejection free algorithm.

111 / 169

Rejection-Free Monte Carlo IV

Consider a state space Ω and a sequence {xtk ∈ Ω} of states from the state
space. Often we simply write i or j etc. to label the states.

Here we assume t0 < t1 < · · · < tk < · · · .

So far we have had ∆t = tk − tk−1 constant, i.e. the system was moved forward
in time by a constant stride.

Furthermore, for two states (xk−1, xk) we have the Markov property so that the
sequence {xtk ∈ Ω} is a Markov chain.

Let us now look at continuous-time Markov chains {xt ∈ Ω|t ∈ R, t ≥ 0}. For
the chain to be a continuous-time Markov chain the following condition needs to
apply

112 / 169

Rejection-Free Monte Carlo V

P(x(t + τ) = j |x(τ) = i , x(u) = k, 0 ≤ u ≤ τ) = P(x(t + τ) = j |x(τ) = i) . (109)

Define

pij (t) := P(x(t + τ) = j |x(τ) = i) = P(x(t) = j |x(0) = i) (110)

and for any state i we have (for N possible states)

N∑
j=1

pij (t) = 1 . (111)

Let P(0) = limt↘0 P(t) = I be the initial condition. Then the matrix R defined by

lim
h↘0

P(h)− I

h
= P′(0) = R (112)

is the infinitesimal generator of the continuous-time Markov process with rate rij

113 / 169

Rejection-Free Monte Carlo VI

∑
j=1,j 6=i

rij = −rii (113)

and

rij = lim
h↘0

pij (h)

h
≥ 0 and rii ≤ 0 . (114)

Define ri := −rii > 0 to be the rate corresponding to state i . Given R, then for all
t ≥ 0

P′(t) = RP(t) . (115)

and

P(t) = Re−Rt (116)

as the first-passage-time distribution and further

114 / 169

Rejection-Free Monte Carlo VII

pij = rije
−rij t . (117)

Since we are talking about first-passage only, only one of the possibilities can happen.

Thus, rather than focusing on the transition probabilities (c.f. Figure 22) as we have
in the previous chapters, we can focus on the rates between states opening up to
models where there is no Hamiltonian. Even more so, the rates themselves may
depend on time. If they do not then the Markov process is stationary.

115 / 169

Rejection-Free Monte Carlo VIII

i
j

j
‚rj i

rji

rj j
‚‚

rij

rjj
‚rij

‚

Figure 22: The figure shows the general situation where the circles denote states in state space
that belong to the same state i .

116 / 169

Rejection-Free Monte Carlo IX

Let ni denote the population of state i .

Given that we are dealing with a thermal system then ni must be proportional to
exp{−F (i)/kBT}.

In equilibrium if we have detailed balance then

ni rij = nj rji . (118)

Thus, what is needed for a model is a state space Ω and a set of rates R, i.e.
(Ω,R).

This can for example be a set of chemical reactions with the corresponding rates.

We envisage that at any given time for a state i not all states j are accessible.

Thus it is convenient to relabel the currently accessible states with a new label.

We arrive at a list of N possible events and a list with corresponding rates

{En ∈ Ω} with n = 1, . . . ,N (119)

{rn} with n = 1, . . . ,N . (120)

117 / 169

Rejection-Free Monte Carlo X

From a computational point of view, it is immediately apparent that what is
needed is a well performing bookkeeping algorithm for the events and the rates as
they may change after an event has been chosen.

Let us consider this for the Ising model.

It was pointed out by Bortz, Kalos and Lebowitz [54] that the probability of
accepting new configurations in the Ising model is very low in same cases.

Consider the case when the temperature is low.

Then two spins will have likely the same orientation and thus a reversal has very
low probability.

Thus, out of the N attempts only a very low fraction will result in changes.
Suppose only attempts are made that are successful.

For this the rates rij from state i to j need to be known a priori.

118 / 169

Rejection-Free Monte Carlo XI

In the Ising case we know transition rates among states a priori. For the
two-dimensional Ising model

H = −J
∑
<i,j>

SiSj Si = ±1 (121)

with its spin-up spin-down symmetry we have the situations as shown in Table 2.

Spin ↑ (+1) ↓ (−1)

Neighbours 4 3 2 1 0 0 1 2 3 4
Class 1 2 3 4 5 6 7 8 9 10

Table 2: Classes for the kinetic Monte Carlo (n-fold way) algorithm proposed by Bortz et.
al. [54]. Corresponding to each class i there is a probability pi .

Altogether we have ten possible states, depending on the number of neighbors
the central spin is surround by.

Each of these states we assign a class.

119 / 169

Rejection-Free Monte Carlo XII

Assume further that the transition probability between states is given by

p =
x

1 + x
with x = exp{−∆H/kBT} , (122)

then all possible transitions ri, are given.

One possibility is to use Equation 117 to draw time increments for the event to
happen.

This algorithm is known as the first-reaction method [55].

For this we generate a random number ρ ∈ (0, 1) and compute

tij = −r−1
ij ln(ρ) . (123)

Thus, for every state change we know the probability and the first passage times.

What remains to do is to identify the state change i → j . For this we select the
reaction coordinate that comes first in time

∆t = min
ij

tij . (124)

Then this state change is performed and time advances (see Algorithm 15)

t = t + ∆t . (125)

120 / 169

Rejection-Free Monte Carlo XIII

.

Algorithm 15 First Reaction Monte Carlo Algorithm

1: Initial time t = 0
2: Choose initial state i

3: for n-of-samples do
4: Set up list of transition rates rij (size N)
5: Generate N random numbers ρj from a uniform distribution on (0, 1]

6: tij = r−1
ij ln(ρ−1

j)

7: ∆t = minij tij
8: Carry out event i → j that is minimum
9: Update t = t + ∆t

10: i ← j

11: end for

121 / 169

Rejection-Free Monte Carlo XIV

Hence, we only perform those state changes that actually occur.

This is in contrast to the procedure that we have developed so far.

Note that this algorithm uses O(N) to build the list of transition rates, O(N) for
the number of random numbers and O(N) to determine the minimum time.

The obvious difference to the Metropolis Monte Carlo algorithm is that time does
not advance in fixed increments but rather leaps in non-constant strides.

It must further be pointed out that the transition probabilities change at every
step.

Indeed, one of the key features is that the distribution of rates is coupled to the
state space [56] and can change.

For the Ising case there is no such problem.

This can be seen when we consider the two-dimensional case shown in
Diagram 109.

↑ ↑ ↓
↑ ↓ ↑
↑ ↑ ↑

This translates into the class scheme from Table 2.

122 / 169

Rejection-Free Monte Carlo XV

2 3 10
2 4 3
1 2 2

A spin flip can change the transition probability and with it the class.

The starting point is a choice of a state the system is started in.

This determines the possible states that the system can transition into and the
corresponding rates rij .

The next step is to compute the sum over all the possible rates from i to j , i.e.
all possible reaction paths.

The next step then is to pick one of the possible reaction paths with equal
probability followed by advancing the time as shown in Algorithm 16.

123 / 169

Rejection-Free Monte Carlo XVI

.

Algorithm 16 Kinetic Monte Carlo Algorithm

1: Initial time t = 0
2: Choose initial state i at random
3: for n-of-samples do
4: Set up list of transition rates rij (size N)
5: Compute Ri,j =

∑i
k=1 rik for j = 1, ...,N

6: Compute Ri = Ri,N

7: Generate ρ from a uniform distribution on (0, 1]

8: Choose i such that Ri,j−1 < ρRi ≤ Rij

9: Carry out event j
10: Update i → j

11: Generate ρ from a uniform distribution on (0, 1]

12: ∆t = R−1
i ln(ρ−1)

13: t = t + ∆t

14: end for

124 / 169

Rejection-Free Monte Carlo XVII

The beauty of the kinetic Monte Carlo Method is that it easily generalizes to
arbitrary states and reactions.

This is why has been used for many condensed matter systems [57–60] with
certain refinements [61–65] and coupled to molecular dynamics [66].

Further developments are the coarse-grained kinetic Monte Carlo [67, 68] and the
first-passage kinetic Monte Carlo algorithm [69].

Let us return to the initial example of the Ising Model.

Let ni be the number of spins in class i (see Table 2), then we need to choose the
relative weights nipi according to Algorithm 16 and once a class has been chosen
a spin in that class is chosen with probability 1/ni .

Fichthorn and Weinberg [70] showed that under the condition of detailed balance
and the effective independence of the events, the Algorithm 16 yields a Poisson
process and that static and dynamic properties are consistent with the
Hamiltonian dynamics [71].

However, detailed balance is not necessary!

As we will see later, the kinetic Monte Carlo method is used for non-equilibrium
situation and where detailed balance is not fulfilled but global balance is achieved.

125 / 169

Rejection-Free Monte Carlo XVIII

Note that number of operation, i.e. the complexity is O(N). Makysm [72]
showed that using a binning method and recursive search trees, the complexity
can be brought down to O(log2 N) [62].

For completeness, even though we are in the chapter on rejection-free Monte
Carlo, here is a rejection algorithm for the model pair (Ω,Q).

126 / 169

Rejection-Free Monte Carlo XIX

.

Algorithm 17 Rejection Kinetic Monte Carlo Algorithm

1: for n-of-samples do
2: Set up list of transition rates rn (size N)
3: Compute an estimator for the sum of rates r̄

4: while state not selected do
5: Generate ρ from a uniform distribution on [0,N)

6: Compute n = (Int)(ρ) + 1
7: Select n if n − ρ < rn/r̄

8: end while
9: n is new state

10: end for

127 / 169

Rejection-Free Monte Carlo XX

PP P P P

P P P P

P P P P

P P P P

Figure 23: For the simplest parallel kinetic Monte Carlo algorithm, we assume that the
topology for the processors is that of a lattice (for simplicity here a simple square lattice with
the processors (P) at the nodes of the lattice) with possible periodic boundary condition
(dashed lines). The solid lines represent bi-directional communiation channels (lhs). The rhs
panel shows the possibility that a processor has been assigned more than site, say for the 2-D
Ising model, L/l lattice sites. The gray shaded area is the part where no communication
between the processors is needed for a decision to flip a spin.

128 / 169

Rejection-Free Monte Carlo XXI

For the Ising model, Lubachevsky [73] has succeeded to parallelize the Monte
Carlo algorithm based on the ideas put forward in the more general context by
Chandy and J. Misra [74, 75].

He formulated the algorithm as a distributed discrete-event system.

Various methods have been designed specifically with lattice models at
focus [76–78].

Also the scaling properties of these type of algorithms have been
investigated [79, 80] associating the development of the individual time
increments at the individual processors with time increments corresponding to
depositions and thus identifying this with surface growth (Kardar-Parisi-Zhang
equation [81]).

The parallelization of the τ -leap has been done by Xu et.al. [82] and for the
presence of long-range interactions see [83].

Also much effort has gone into parallelization of the Gillespie ansatz, for example,
Komarov [84].

The key problem in the parallelization is to avoid event time incompatibilities
with communications.

129 / 169

Rejection-Free Monte Carlo XXII

The solution that Lubachevsky [73] has put forward is the strict synchronization
(c.f. Figure 23 and Algorithm 18).

The problem is solved in this algorithm using a global synchronization at the
slight expense of efficiency.

The algorithm presented here is aiming at the above outlined Ising situation.

We assume two functions nextState(i , ti , neighbours(i)) which calls upon the
neighbor processors for the corresponding states sj and nextTime(ti) delivers the
next time.

130 / 169

Rejection-Free Monte Carlo XXIII

.

Algorithm 18 Lubachevsky Parallel Monte Carlo Algorithm

1: s′ = si
2: t′ = ti
3: for n-of-samples do
4: if ti ≤ minj∈neighbours(i) tij then
5: s′ = nextState(i , ti , neighbours(i))

6: t′ = nextTime(ti)

7: Global synchronize
8: t = t′

9: s′ = s

10: Global synchronize
11: else
12: Global synchronize
13: Global synchronize
14: end if
15: end for

131 / 169

Rejection-Free Monte Carlo XXIV

Assume that in the Ising case the lattice is much larger that the number of
processor and that there are L/l lattice sites per processors (i.e. L× L lattice with
l × l blocks).

There are now interior and boundary sites to be handled by the Algorithm 18.
Korniss et. al. [85] have argued that the synchronization steps in the algorithm
are not necessary.

If the same random number generator runs on each of the processors with the
same initial seed, they argue that the probability of equal-time nearest-neighbor
updates is of measure zero.

Thus they suggest to treat the interior spins (gray shaded region in Figure 23)
like regular spins and use

p = min{1, exp(−∆H/kT)} (126)

with ∆t = − ln(ρ) (ρ the random number) advancement in time.

For the boundary spins the criterion in Algorithm 18 is applied.

To ensure freedom of a deadlock a barrier is used for the boundary spins with a
wait until the local time t becomes less than or equal to the same quantity for
the neighbours.

132 / 169

Rejection-Free Monte Carlo XXV

For the kinetic Monte Carlo algorithm for the Ising model Lubachevsky [73]
introduced an additional class Nb on top of the 10 classes for the boundary spins.
Assume as above that the linear system size is L and that there are 4l boundary
spins per processor.

Then Nb = 4(l − 1).

The basic idea is to use the original Monte Carlo, for example Metropolis Monte
Carlo, for the boundary spins and for the interior spins the kinetic Monte Carlo.

Thus the algorithms proceeds as outlined in Algorithm 19.

For this we augment the 10 classes with the additional class Nb.

133 / 169

Rejection-Free Monte Carlo XXVI

.

Algorithm 19 Lubachevsky Parallel Kinetic Monte Carlo Algorithm

1: Initial time t = 0
2: for n-of-samples do
3: Set up list of transition rates ri = nipi plus Nb

4: Compute Rk =
∑i

i=1 ri
5: Generate ρ from a uniform distribution on (0, 1]

6: Choose i such that Ri < ρRi ≤ Ri

7: Choose a spin with equal probability within the class i

8: if spin is within the interior then
9: Flip the spin

10: else
11: Wait until the local simulated time ≤ neighbour processor
12: Apply Metropolis Monte Carlo to the spin
13: end if
14: Update time
15: end for

134 / 169

Rejection-Free Monte Carlo XXVII

A slightly different approach has been taken by Martinez [86] by a synchronous
time decomposition of the master equation (synchronous parallel kMC method
(spkMC)).

The basic idea is to create so called null events advancing the internal clock of
each processor. This is done without altering the stochastic trajectory of the
system.

Further developments have been done specifically for the reaction-diffusion
problems (see [87] and references therein).

Due to the success of other parallelization algorithms on GPUs, an algorithm was
proposed by Jimenez and Ortiz [88], Klingbeil [89] and Agostino et. al. [90].

Also discrete-event approaches have been developed [91] specifically for the
Gillespie ansatz.

135 / 169

Lifting I

As the name of this section suggests we augment the state space Ω with one or
more additional variables.

Let us first examine this idea for the Ising model in the case of conserved energy.

Assume that we add the extra variable or degree of freedom to the
Hamiltonian [92] (121)

H′ = e −
∑
<i,j>

SiSj Si = ±1 (127)

with Ω′ = N× Ω.

The extra variable e allows to lift the system out of the otherwise constraint
hyperspace of constant energy.

Set e to an appropriate value according to the initial energy.

We can construct a Markov chain by choosing a spin at site ν at random.

We change the spin direction at site ν to obtain ∆H for the energy change in the
Ising Hamiltonian.

If we loose energy, then we transfer the energy to e and accept the change.

136 / 169

Lifting II

If we would gain energy, then we accept the change under the condition that e
has enough energy.

Let us now look at the more general case. Chen et. al. and others [93–97]
constructed a non-reversible Markov chain Monte Carlo Method (Lifted
Metropolis-Hastings) as for example also in the (Hamiltonian) Hybrid Monte [98]
(see also for the Bouncy Particle Sampler method [99]).

The effect of this lifting is a reduced mixing time of the Markov chain (at best
reduced by the square root of the original time).

So far we almost always used the detailed balance condition for the transition
probability W and the invariant distribution p which we want to obtain from a
Markov chain

p(x)W (x , x ′) = p(x ′)W (x ′, x) for all x , x ′ ∈ Ω . (128)

This is not a necessary but sufficient a condition for the transition probability.

137 / 169

Lifting III

One of possible solutions to Eq. 128 is the Metropolis Hastings transition
probability

W (x , x ′) = q(x |x ′)min
{
1,

p(x ′)q(x |x ′)
q(x ′|x)p(x)

}
(129)

with the propositional probability q. The Hybrid Monte Carlo Method [98] has
made use of this propositional probability.

Consider the global balance condition for the transition probability W [100]∫
p(x)W (x , x ′)dx =

∫
p(x ′)W (x ′, x)dx ′ (130)

which we need to really to fulfill and the constraint

W (x , x ′)W (x ′, x) = 0 for all x , x ′ ∈ Ω . (131)

W ’s that fulfill criterion 130 and criterion 131 are said to check a maximal global
balance condition [101, 102].

138 / 169

Lifting IV

Following the idea of adding additional degrees of freedom, we augment the
system by an auxiliary variable e. Thus for the distribution p this results in

p(x , e) = p(x)p(e) (132)

and for the above example (127) this would be

p(e) ∝ exp{−βe} . (133)

and fix the propositional probability as

q(x ′, e|x , e) =

{
1, if x ′ = x + e∆s

0, otherwise
(134)

where the statement x ′ = x + e∆s is meant to express that x ′ and x should not
differ too much.

Thus we updated the state in the direction given by e. This is continued until
rejection occurs.

Then we choose a new e′ and continue with (x ′, e′) which lifts the rejection into
the lifting space rendering the entire method rejection-free.

The probability for the choice of e′ is based on the condition 130.

139 / 169

Event-Chain Monte Carlo I

We will extend the rejection-free Monte Carlo simulation methods by considering
irreversible Markov chains drawing on idea by Peters [103] and the concept of
lifting [94].

These methods have been successfully developed for the problem of melting in
two dimensions [104–107].

Extensions have been derived for discrete-variable models [108], classical
continuous spin models [109, 110] and further generalized to rejection-free
global-balance algorithms [111] and the forward event-chain Monte Carlo
algorithm [100].

Here we follow [100] in the exposition of the algorithm.

The goal is to use the ideas of lifting developed in the previous section to develop
a rejection-free Monte Carlo algorithm.

We use the extra variable e to suggest a new state.

Rather than using an except/reject on this, we choose a time for the new event
to happen and sample all the state in a chain along the way, until we have
reached the transition time. We then choose a new e value and continue.

To sample the time ∆s we go about as in (117) and (123).

140 / 169

Event-Chain Monte Carlo II

For ease presentation we follow the mechanistic language and assume an energy
function E(x) and consider e a velocity (see also Hybrid Monte Carlo [98]).

Thus in Eq. 134 we are looking for displacements in space controlled by the time
∆s and the velocity e.

In Eq (134) we have made a choice for the propositional probability.

With the notation [a]+ = max{0, a} and Metropolis choice of transition
probability (129) we have

W (x , x ′) = min{1, exp{−∆E(x)e}} = exp{−[∆E(x)e]+} . (135)

To determine the transition time we add up all the moves until we have reached
the event time

∆E∗(∆s) =

∫ ∆s

0
[∇E(x + se)e]+ds (136)

and find the time ∆s by solving the equation

∆E∗(∆s) = log(ρ) (137)

where ρ ∈ (0, 1] is a uniform random number. It rests to choose the transition
probability for e. Here Michel and Senecal [100] suggest

141 / 169

Event-Chain Monte Carlo III

p(e′ → e) = δ(e′ + e) . (138)

In Algorithm 20 the full algorithm is exposed (for parallelization for example for
dense hard sphere and polymer systems see [112]).

142 / 169

Event-Chain Monte Carlo IV

Algorithm 20 Event Chain Monte Carlo Algorithm [100]

1: Initial state x ′ = x0
2: for n-of-samples do
3: Set current event chain length lc = l

4: Set random direction e

5: while True do
6: Set initial sample x = x ′

7: Compute ∆E∗ = − log(ρ), ρ from a uniform distribution on (0, 1]

8: Compute ∆s

9: if lc < ∆s then
10: Compute x ′ = x + lce

11: Set sample xk = x ′

12: Break
13: else
14: Compute x ′ = x + ∆se

15: Update chain length lc = lc −∆s

16: Update direction −e
17: end if
18: end while
19: end for

143 / 169

Excercises

Excercises I

Exercise 1: Hard Disk Potential
Implement the potential:

uij (r) =

{
0 if r > rc
∞ otherwise

(139)

Exercise 2: Lorentz-Berelot combining rule
Implement the potential:

σαβ =
σαα + σββ

2
(140)

εαβ =
√
εαα + εββ (141)

Exercise 3: Morse Potenial
Implement the potential:

uij (r) = k
(
1− ea(r−r0)

)2
(142)

144 / 169

Excercises II

Exercise 4: Mie-Potential
Implement the Mie Potential [114]:

U(r) = A/rm − B/rn (143)

Exercise 5: Random Number Generator
For some purposes the simple method will be sufficient, but if good
accuracy is needed the above algorithm should be avoided. More efficient
and accurate is the idea of von Neumann [115] with the modification of
Forsythe [116].
Let G(x) be a function on the interval [a, b] with 0 < G(x) < 1 and f (x)

the probability distribution f (x) = a exp [−G(x)], where a is a constant.

145 / 169

Excercises III

Algorithm 21 v. Neumann Algorithm

1: Generate r from a uniform distribution on (0, 1)

2: Set x = a + (b − a)r

3: Calculate t = G(x)

4: Generate r1, r2, ..., rk from a uniform distribution on (0, 1)

5: k is determined from the condition t > r1 > r2 > ... > rk−1 < rk
6: if t < r1 then
7: k = 1
8: end if
9: if k is even then

10: reject x and go to 1
11: else
12: x is a sample
13: end if

146 / 169

Excercises IV

Exercise 6: Permutation test
Divide up the sequence random numbers into non-overlapping
subsequences of a fixed length n. For each subsequence, assume that the
values in the subsequence are unique. Replace each value by its ranking
based on its magnitude. The largest value is replaced by n. Each
subsequence represents a permutation of the integers from 1 to n.
Now count how often each permutation occurs. Each permutation should
occur with same frequency.
Use your favorite random number generator and perform the permutation
test.

Exercise 7: Generate a random sequence of a total of n letter from the following set
{′A′;′ C ′;′ G ′;′ T ′}. How do you test for randomness of the sequence?

Exercise 8: Weibul distribution
Construct an algorithm generating the Weibull distribution having the
cumulative distribution function with λ > 0 and α > 0

F (x) = 1− e−λx
α

, x ≥ 0 (144)

and probability density

f (x) = λαxα−1e−(λx)α . (145)

147 / 169

Bibliography

Bibliography I

References

[1] M. N. Rosenbluth A. H. Teller N. Metropolis, A. W. Rosenbluth and E. Teller.
J. Chem. Phys., 21:1087–1091, 1953.

[2] T. E. Wainwright B. J. Alder. J. Chem. Phys., 27(1208), 1957.

[3] A. Rahman. Phys. Rev. A, 136:405, 1964.

[4] A. Rahman and F. Stillinger. Molecular dynamics study of liquid water. J.
Chem. Phys., 55(5), 1971.

[5] M. Karplus P.G. Wolynes J.A. McCammon, B.R. Gelin. Nature, 262:325–26,
1976.

[6] J. P. Valleau G. Torrie. J. Comput. Phys, 23:187, 1977.

[7] Bernd A. Berg and Thomas Neuhaus. Multicanonical ensemble: A new
approach to simulate first-order phase transitions. Physical Review Letters,
68(1):9–12, 01 1992.

[8] Fugao Wang and D. P. Landau. Efficient, multiple-range random walk algorithm
to calculate the density of states. Physical Review Letters, 86(10):2050–2053,
03 2001.

148 / 169

Bibliography II

[9] Berend Smit and Daan Frenkel. Understanding Molecular Simulation. Academic
Press, 2001.

[10] Andrew R. Leach. Molecular Modelling: Principles and Applications.
Prentice-Hall, 20012.

[11] K. Binder and D.W. Heermann. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag (first editon 1988), 2017.

[12] P. Allen and D.J. Tildesley. Computer Simulations of Liquids. Clarendon Press,
Oxford, 1987.

[13] Lei Liu and Dieter W Heermann. The interaction of dna with multi-cys 2 his 2
zinc finger proteins. Journal of Physics: Condensed Matter, 27(6):064107, 2015.

[14] D. Chandler J. D. Weeks and H. C. Andersen. J. Chem. Phys., 54:5237, 1971.

[15] J. E. Jones. On the determination of molecular fields. i. from the variation of
the viscosity of a gas with temperature. Proceedings of the Royal Society of
London. Series A, 106(738):441, 10 1924.

[16] J. E. Jones. On the determination of molecular fields. ii. from the equation of
state of a gas. Proceedings of the Royal Society of London. Series A,
106(738):463, 10 1924.

149 / 169

Bibliography III

[17] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck,
M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir,
K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen,
B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote,
J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus.
All-atom empirical potential for molecular modeling and dynamics studies of
proteins. The Journal of Physical Chemistry B, 102(18):3586–3616, 04 1998.

[18] Robert L Jernigan and Ivet Bahar. Structure-derived potentials and protein
simulations. Current Opinion in Structural Biology, 6(2):195–209, 1996.

[19] S. Miyazawa and R.L. Jernigan. Macromolecules, 18:534–552, 1985.

[20] Miriam Fritsche, Ras B. Pandey, Barry L. Farmer, and Dieter W. Heermann.
Variation in structure of a protein (h2ax) with knowledge-based interactions.
PLoS ONE, 8(5):e64507–, 05 2013.

[21] S.M. Omohundro. Five balltree construction algorithms. Technical report, Tech.
rep., ICSI Berkeley, 1989.

[22] Ashraf M. Kibriya and Eibe Frank. An Empirical Comparison of Exact Nearest
Neighbour Algorithms, pages 140–151. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

150 / 169

Bibliography IV

[23] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[24] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm,
1993.

[25] A. Guttman. R-trees: a dynamic index structure for spatial searching. ACM, 14,
1984.

[26] Kriegel H.P. Schneider R. Seeger B. Beckmann, N. The r*-tree: An efficient
and robust access method for points and rectangles. SIGMOD Rec.,
19(2):322–331, 1990.

[27] B. J. Alder T. E. Wainwright. Nuovo cimento, Suppl. Sec., 9:116, 1958.

[28] T. E. Wainwright B. J. Alder. J. Chem. Phys., 31:456, 1959.

[29] T. E. Wainwright B. J. Alder. J. Chem. Phys., 33:1439, 1960.

[30] 1439 B. J. Alder, T. E. Wainwright 33. J. Chem. Phys., 33:1439, 1960. R.
Beeler, Jr:. In Physics of Many-Particle Syslems, ed. by C. Meeron (Gordon and
Breach, New York 1964).

[31] L. Verlet. Phys. Rev., 159:98, 1967.

[32] Y. B. Suris. Comput. Math. Phys., 27:149–156, 1987.

151 / 169

Bibliography V

[33] M. Duncan B. Gladman and J. Candy. Symplectic integrators for long-term
integrations in celestial mechanics. Celestial Mech. Dynam. Astronom,
52:221–240, 1991.

[34] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman
and Hall, London, 1994.

[35] M. L. Klein S. Nose. J. Chem. Phys., 78:6928, 1983. Dahlquist, A. Bjorck:
Numerical Methods (Prentice Hall, Englewood Cliffs, NJ 1964).

[36] P. H. Berens K. R. Wilson: W. C. Swope, H. C. Andersen. J. Chem. Phys.,
76:637, 1982.

[37] R. B. Hickman A.J.C. Ladd W.T. Ashurst B. Moran W. G. Hoover, D. J. Evans.
Phys. Rev. A, 22(690), 1980.

[38] W. G. Hoover. Physica A, 18, 1983.

[39] W. G. Hoover. In H.J. Hanley, editor, In Nonlinear Fluid Behaviour.
North-Holland, Amsterdam, 1983.

[40] B. Moran W. G. Hoover, A. J.C. Ladd. Phys. Rev. Lett., 48:3297, 1983.

[41] G. P. Morriss D. J. Evans. Chem. Phys., 77(63), 1983.

[42] G. P. Morriss D. J. Evans. Chem. Phys., 77:63, 1983.

[43] S. Gupta J. M. Haile. J. Chem. Phys, 79:3067, 1983.

152 / 169

Bibliography VI

[44] G. P. Morriss D. M. Heyes, D. J. Evans. 1985. In Daresbury Lab. Information
Quarterly for Computer Simulation of Condensed Phases, volume 17. 1985.

[45] J. H.R. Clarke D. Brown. 1984. Mol. Phys, (1243), 1984.

[46] J. R. Ray. Am. J. Phys., 40:179, 1972.

[47] H. C. Andersen. J. Chem. Phys., (72):2384, 1980.

[48] H. C. Andersen. J. Chem. Phys., (72):2384, 1980.

[49] H. W. Graben J. M. Haile. J. Chem. Phys., 73:2412, 1980.

[50] G. van Kampen. Stochastic Processes in Physics and Chemistry. North Holland,
Amsterdam, 1981.

[51] P. H. Peskun. Biometrika, 60:607–612, 1973.

[52] W. K. Hastings. Biometrika, 57:97–109, 1970.

[53] David G. Kendall. Random fluctuations in the age-distribution of a population
whose development is controlled by the simple "birth-and-death" process.
12(2):278–285, 1950.

[54] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. A new algorithm for monte carlo
simulation of ising spin systems. Journal of Computational Physics,
17(1):10–18, 1975.

153 / 169

Bibliography VII

[55] Daniel T Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403–434, 1976.

[56] Tim P. Schulze. Efficient kinetic monte carlo simulation. J. Comput. Phys.
0021-9991, 227(4):2455–2462, 2008.

[57] W M Young and E W Elcock. Monte carlo studies of vacancy migration in
binary ordered alloys: I. Proceedings of the Physical Society, 89(3):735, 1966.

[58] B. Meng and W. H. Weinberg. Dynamical monte carlo studies of molecular
beam epitaxial growth models: interfacial scaling and morphology. Surface
Science, 364(2):151–163, 1996.

[59] Vasily V. Bulatov and Wei Cai. Computer Simulations of Dislocations (Oxford
Series on Materials Modelling. Oxford Univ Press, 2006.

[60] Stephan A. Baeurle, Takao Usami, and Andrei A. Gusev. A new multiscale
modeling approach for the prediction of mechanical properties of polymer-based
nanomaterials. Polymer, 47(26):8604–8617, 12 2006.

[61] K. Binder and M.H. Kalos. In K. Binder, editor, Monte Carlo Methods in
Statistical Physics, volume 7 of Springer Topics in Current Physics, page 225.
Springer-Verlag Berlin Heidelberg, 1979.

154 / 169

Bibliography VIII

[62] James L. Blue, Isabel Beichl, and Francis Sullivan. Faster monte carlo
simulations. Physical Review E, 51(2):R867–R868, 02 1995.

[63] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. The Journal of
Physical Chemistry A, 104(9):1876–1889, 03 2000.

[64] T. P. Schulze. Kinetic monte carlo simulations with minimal searching. Physical
Review E, 65(3):036704–, 02 2002.

[65] James M. McCollum, Gregory D. Peterson, Chris D. Cox, Michael L. Simpson,
and Nagiza F. Samatova. The sorting direct method for stochastic simulation of
biochemical systems with varying reaction execution behavior. Computational
Biology and Chemistry, 30(1):39–49, 2 2006.

[66] Angela Violi, Adel F. Sarofim, and Gregory A. Voth. Kinetic monte
carlo–molecular dynamics approach to model soot inception. Combustion
Science and Technology, 176(5-6):991–1005, 05 2004.

[67] M.A. Katsoulakis 3 (2005) A. Chatterjee, D.G. Vlachos. International Journal
for Multiscale Computational Engineering, 3(135), 2005.

[68] A. Chatterjee and D.G. Vlachos. An overview of spatial microscopic and
accelerated kinetic monte carlo methods. Journal of Computer-Aided Materials
Design, 14:253, 2007.

155 / 169

Bibliography IX

[69] Aleksandar Donev, Vasily V. Bulatov, Tomas Oppelstrup, George H. Gilmer,
Babak Sadigh, and Malvin H. Kalos. A first-passage kinetic monte carlo
algorithm for complex diffusion–reaction systems. Journal of Computational
Physics, 229(9):3214–3236, 2010.

[70] Kristen A. Fichthorn and W. H. Weinberg. Theoretical foundations of dynamical
monte carlo simulations. The Journal of Chemical Physics, 95(2):1090–1096,
2017/01/03 1991.

[71] Santiago A. Serebrinsky. Physical time scale in kinetic monte carlo simulations
of continuous-time markov chains. Physical Review E, 83(3):037701–, 03 2011.

[72] P A Maksym. Fast monte carlo simulation of mbe growth. Semiconductor
Science and Technology, 3(6):594, 1988.

[73] Boris D Lubachevsky. Efficient parallel simulations of dynamic ising spin
systems. Journal of Computational Physics, 75(1):103–122, 1988.

[74] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software
Engineering, SE-5(5):440–452, 1979.

[75] J. Misra. Distributed discrete-event simulation. ACM Comput. Surv., 18:39,
(986.

156 / 169

Bibliography X

[76] Yunsic Shim and Jacques G. Amar. Semirigorous synchronous sublattice
algorithm for parallel kinetic monte carlo simulations of thin film growth.
Physical Review B, 71(12):125432–, 03 2005.

[77] Giorgos Arampatzis, Markos A. Katsoulakis, Petr Plecháč, Michela Taufer, and
Lifan Xu. Hierarchical fractional-step approximations and parallel kinetic monte
carlo algorithms. Journal of Computational Physics, 231(23):7795–7814, 2012.

[78] Ignacio Martin-Bragado, J. Abujas, P. L. Galindo, and J. Pizarro. Synchronous
parallel kinetic monte carlo: Implementation and results for object and lattice
approaches. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 352:27–30, 2015.

[79] G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold. From massively
parallel algorithms and fluctuating time horizons to nonequilibrium surface
growth. Physical Review Letters, 84(6):1351–1354, 02 2000.

[80] G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai, and P. A. Rikvold.
Suppressing roughness of virtual times in parallel discrete-event simulations.
Science, 299(5607):677, 01 2003.

[81] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling of
growing interfaces. Physical Review Letters, 56(9):889–892, 03 1986.

157 / 169

Bibliography XI

[82] L. Xu, M. Taufer, S. Collins, and D. G. Vlachos. Parallelization of tau-leap
coarse-grained monte carlo simulations on gpus. In 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pages 1–9, 2010.

[83] Jens Nielsen, Mayeul d’Avezac, James Hetherington, and Michail Stamatakis.
Parallel kinetic monte carlo simulation framework incorporating accurate models
of adsorbate lateral interactions. The Journal of Chemical Physics,
139(22):224706, 2018/08/20 2013.

[84] Ivan Komarov and Roshan M. D’Souza. Accelerating the gillespie exact
stochastic simulation algorithm using hybrid parallel execution on graphics
processing units. PLOS ONE, 7(11):e46693–, 11 2012.

[85] G Korniss, M. A Novotny, and P. A Rikvold. Parallelization of a dynamic monte
carlo algorithm: A partially rejection-free conservative approach. Journal of
Computational Physics, 153(2):488–508, 1999.

[86] E. Martínez, P. R. Monasterio, and J. Marian. Billion-atom synchronous parallel
kinetic monte carlo simulations of critical 3d ising systems. Journal of
Computational Physics, 230(4):1359–1369, 2011.

[87] Weiliang Chen and Erik De Schutter. Parallel steps: Large scale stochastic
spatial reaction-diffusion simulation with high performance computers. Frontiers
in Neuroinformatics, 11:13, 2017.

158 / 169

Bibliography XII

[88] F. Jiménez and C. J. Ortiz. A gpu-based parallel object kinetic monte carlo
algorithm for the evolution of defects in irradiated materials. Computational
Materials Science, 113:178–186, 2016.

[89] Guido Klingbeil, Radek Erban, Mike Giles, and Philip K. Maini. Stochsimgpu:
parallel stochastic simulation for the systems biology toolbox 2 for matlab.
Bioinformatics, 27(8):1170–1171, 04 2011.

[90] Daniele D. Agostino, Giulia Pasquale, Andrea Clematis, Carlo Maj, Ettore
Mosca, Luciano Milanesi, and Ivan Merelli. Parallel solutions for voxel-based
simulations of reaction-diffusion systems. BioMed Research International,
2014:10, 2014.

[91] Lorenzo Dematté and Tommaso Mazza. On parallel stochastic simulation of
diffusive systems. In Monika Heiner and Adelinde M. Uhrmacher, editors,
Computational Methods in Systems Biology, pages 191–210, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[92] Michael Creutz. Microcanonical monte carlo simulation. Physical Review
Letters, 50(19):1411–1414, 05 1983.

[93] Fang Chen, László Lovász, and Igor Pak. Lifting markov chains to speed up
mixing, 1999.

159 / 169

Bibliography XIII

[94] Persi Diaconis, Susan Holmes, and Radford M. Neal. Analysis of a nonreversible
markov chain sampler. pages 726–752, 2000.

[95] Thomas P. Hayes and Alistair Sinclair. Liftings of tree-structured markov chains.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, volume 6302 of Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, 2010.

[96] Konstantin S. Turitsyn, Michael Chertkov, and Marija Vucelja. Irreversible
monte carlo algorithms for efficient sampling. Physica D: Nonlinear Phenomena,
240(4–5):410–414, 2 2011.

[97] Marija Vucelja. Lifting—a nonreversible markov chain monte carlo algorithm.
American Journal of Physics, 84(12):958–968, 2017/01/06 2016.

[98] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid
monte carlo. Physics Letters B, 195(2):216–222, 1987.

[99] Alexandre Bouchard-Côté, Sebastian J. Vollmer, and Arnaud Doucet. The
bouncy particle sampler: A nonreversible rejection-free markov chain monte
carlo method. Journal of the American Statistical Association,
113(522):855–867, 04 2018.

[100] Manon Michel and Stéphane Sénécal. Forward Event-Chain Monte Carlo: a
general rejection-free and irreversible Markov chain simulation method. 02 2017.

160 / 169

Bibliography XIV

[101] Joris Bierkens, Paul Fearnhead, and Gareth Roberts. The Zig-Zag Process and
Super-Efficient Sampling for Bayesian Analysis of Big Data. 07 2016.

[102] Joris Bierkens and Gareth Roberts. A piecewise deterministic scaling limit of
lifted metropolis-hastings in the curie-weiss model. Ann. Appl. Probab.,
27(2):846–882, 2017.

[103] E. A. J. F. Peters and G. de With. Rejection-free monte carlo sampling for
general potentials. Physical Review E, 85(2):026703–, 02 2012.

[104] Etienne P. Bernard, Werner Krauth, and David B. Wilson. Event-chain monte
carlo algorithms for hard-sphere systems. Physical Review E, 80(5):056704–, 11
2009.

[105] Etienne P. Bernard and Werner Krauth. Two-step melting in two dimensions:
First-order liquid-hexatic transition. Physical Review Letters, 107(15):155704–,
10 2011.

[106] Sebastian C Kapfer and Werner Krauth. Sampling from a polytope and hard-disk
monte carlo. Journal of Physics: Conference Series, 454(1):012031, 2013.

[107] Sebastian C. Kapfer and Werner Krauth. Two-dimensional melting: From
liquid-hexatic coexistence to continuous transitions. Physical Review Letters,
114(3):035702–, 01 2015.

161 / 169

Bibliography XV

[108] Alejandro Mendoza-Coto, Rogelio Díaz-Méndez, and Guido Pupillo.
Event-driven monte carlo: Exact dynamics at all time scales for discrete-variable
models. EPL (Europhysics Letters), 114(5):50003, 2016.

[109] Manon Michel, Johannes Mayer, and Werner Krauth. Event-chain monte carlo
for classical continuous spin models. EPL (Europhysics Letters), 112(2):20003,
2015.

[110] Yoshihiko Nishikawa, Manon Michel, Werner Krauth, and Koji Hukushima.
Event-chain algorithm for the heisenberg model: Evidence for
$z\ensuremath{\simeq}1$ dynamic scaling. Physical Review E, 92(6):063306–,
12 2015.

[111] Manon Michel, Sebastian C. Kapfer, and Werner Krauth. Generalized
event-chain monte carlo: Constructing rejection-free global-balance algorithms
from infinitesimal steps. The Journal of Chemical Physics, 140(5):054116,
2018/08/13 2014.

[112] Tobias A. Kampmann, Horst-Holger Boltz, and Jan Kierfeld. Parallelized event
chain algorithm for dense hard sphere and polymer systems. J. Comput. Phys.
0021-9991, 281(C):864–875, 2015.

[113] A. Krogh R. Durbin, S.R. Eddy and G. Mitchison. Biological sequence analysis.
Cambridge University Press, 1998.

162 / 169

Bibliography XVI

[114] Gustav Mie. Zur kinetischen theorie der einatomigen körper. Annalen der
Physik, 11:657–697, 1903.

[115] 1192 S. K. Park, K. W. Miller Comm. ACM 31. J. 1988. von Neumann:
Various Techniques Used in Connection with Random Digits, Collected Works,
Vol. 5 (Pergamon, New York 1963).

[116] 817 G. E. Forsythe: Math. Comput. 26. 1972. 1972.

163 / 169

Index

Index I

Accept/Reject Method, 86

additive generators, 77

Arrhenius law, 69

autocorrelation function, 103

ball tree, nearest-neighbor search, 40

BKL algorithm, 122

boundary condition, 51

CHARMM, 30

coarse-grained kinetic Monte Carlo, 129

constant pressure molecular dynamics, 61

Constant Temperature Molecular Dynamics, 58

continuous-time Markov chain, 116

Creutz algoirthm, 141

damped-force method, 58

164 / 169

Index II

diffusion matrix, 68

distribution, empirical, 90

enthalpy, 61

Error Analysis, 103

Event-Chain Monte Carlo, 144

first reaction algorithm, 124

first-passage kinetic Monte Carlo algorithm, 129

first-reaction method, 124

Force Fields, 15

Gaussian isokinetic MD, 58

generalized shift-register generator, 81

Gibbs-Sampler, 88

Gillespi algorithm, 113

Gillespie algorithm, 124

Hamiltonian Monte Carlo, 105

165 / 169

Index III

Hard Disk Potential, 149

Hybrid Monte, 141

Ising model, 122

KD-tree, 40

lagged Fibonacci generator, 80

Langevin Dynamics, 67, 68

Langevin equation, 68

Lennard-Jones, 24

Lifted Metropolis-Hastings, 141

lifting, 141, 144

linear congruential generators, 76

Liouville theorem, 46

Lorentz-Berelot combining rule, 149

Markov Chain Monte Carlo, 93

maximal global balance condition, 142

166 / 169

Index IV

Metropolis-Hastings Monte Carlo, 98

Mie Potential, 150

Minimum Image Convention, 54

Molecular Dynamics, 44

Molecular Dynamics (MD), 44

Monte Carlo Method, 72

Morse Potenial, 149

multi-scale models / methods, 5

multiplicative random number generator, 77

n-fold way, 122

Nearest Neighbor Search (NNS), 36

Nearest-Neighbor Search, 38

Non Uniform Distributions, 83

non-reversible Markov chain Monte Carlo, 141

oct-tree, 40

167 / 169

Index V

parallel kinetic Monte Carlo, 133

period, 77

permutation test, 152

polar method, 85

quad-tree, 40

R*-tree, 42

R-tree, 42

Random Numbers, 74

rejection-free Monte Carlo, 113

sampling, Monte Carlo, 92

shifted Lennard-Jones, 25

state of a system, 12

summed form, 56

symplectic, 45

sympletic, 47

168 / 169

Index VI

synchronous parallel kMC method, 139

systolically, 114

Taylor expansion, 48

truncated Lennard-Jones, 25

two-dimensional Ising model, 123

Verlet algorithm, 49

Verlet table, 42

WCA, Weeks-Chandler-Andersen potential, 22

Wiener process, 68

169 / 169

	Introduction
	General Remarks
	Force Fields

	Molecular Dynamics
	Basic Algorithm
	Boundary Conditions
	Verlet Algorithm
	Constant Temperature Molecular Dynamics
	Constant Pressure Molecular Dynamics

	Langevin Dynamics
	Monte Carlo Method
	Random Numbers
	Accept/Reject Method
	Gibbs-Sampler
	Sampling from an Empirical Distribution
	Monte Carlo Sampling
	Markov Chain Monte Carlo
	Metropolis-Hastings Monte Carlo
	Error Analysis
	Hamiltonian Monte Carlo
	Rejection-Free Monte Carlo

	Excercises
	Bibliography
	Index

