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Introduction



Introduction I
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Introduction II
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Fig. 2 | The folding process illustrated for CASP13 target T0986s2. CASP 
target T0986s2, L a, Steps of structure prediction. b, The 
neural network predicts the entire L L distogram based on MSA features, 

c, One iteration 
of gradient descent (1,200 steps) is shown, with the TM score and root mean 
square deviation (r.m.s.d.) plotted against step number with five snapshots of 
the structure. The secondary structure (from SST33) is also shown (helix in blue, 
strand in red) along with the native secondary structure (Nat.), the secondary 

structure prediction probabilities of the network and the uncertainty in 
torsion angle predictions (as κ−1 of the von Mises distributions fitted to the 
predictions for φ and ψ). While each step of gradient descent greedily lowers 
the potential, large global conformation changes are effected, resulting in a 
well-packed chain. d, The final first submission overlaid on the native structure 
(in grey). e, The average (across the test set, n
potential structure against the number of repeats of gradient descent per 
target (log scale).

Figure 1: Image taken from: Improved protein structure prediction using potentials from deep
learning Nature 2020 [3].
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Introduction III

(Machine) learning can be roughly categorized into supervised and unsupervised.
Typical techniques include:

supervised methods:
Artificial Neural Network,
Support Vector Machines and linear classifiers
Bayesian Statistics,
k-Nearest Neighbors,
Hidden Markov Model
Decision Trees

un-supervised methods
Autoencoders,
Expectation Maximization,
Self-Organizing Maps,
k-Means
Fuzzy clustering
Density-based clustering.

Methods developed and applications of machine learning in biophysical problems [1]
range from finding genes, as featured in the introduction to the analysis of images
such as computer tomography spanning the entire variety of bio-biological problems.
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Markov Decision Process



Introduction I

Figure 2: Markov decision process. Image taken from:
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-
part-1-bf00dda41690.
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Introduction II

Let S be a state space (a countable non-empty set) , A be the action space (countable
non-empty set of actions) and O the observation space. Let P0 be a transition
probability kernel that assigns to (S = s,A = a) ∈ S × A a probability measure over
S × R : P0(· | s, a).

A countable Markov Decision Process (MDP) is defined as a triple M = (S ,A,P0).
We further define a reward function

R(s, a) = E[R | S = s,A = a] =

∫
R

∑
s′∈S

R · P0(s′,R | s, a)dR . (1)

Furthermore let

R(s, a, s′) = E[R | St = s,A = a, St+1 = s′] =

∫
R
R · P0(s′,R | s, a)dR . (2)

A Markov Reward Process (MRP) is a Markov process with a reward function. Hence
a tuple (S ,P,R, γ). γ is a discount factor, where γ ∈ [0, 1].
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Introduction III

Figure 3: Markov decision process, Figure taken from:
https://medium.com/@jonathan-hui/rl-policy-gradients-explained-9b13b688b146.

From the definition it is clear that for a sequence
S1,A1 . . . , St−1,At−1,St ,At ,St+1,At+1 we have

P[St+1,Rt+1 | St ;At ] = P[St+1,Rt+1 | S1,A1 . . . , St−1,At−1, St ;At ] . (3)

Thus the sequence is Markovian

At each step t an agent:
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Introduction IV

Receives observation ot

Receives (immediate) scalar reward Rt

Executes action at at

The environment:

Receives action at

Emits observation Ot+1

Emits scalar reward Rt+1

If st = ot the environment is fully observable. Let Gt be the total discounted rewards
from time step t

Gt =
∞∑
k=0

γkRt+k+1 . (4)
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Deep Learning I

Recall that the gradient descent method computes the gradient of the cost function
J w.r.t. to a parameter θ

θ = θ − α · ∇θJ(θ) . (5)

with the rate α. Choosing a proper learning rate can be difficult. Usually a learning
rate schedule is used where α progressively decreases with the number of iterations.
The challenge is that mostly the function that we want to minimize is highly
non-convex so that there is a high probability to get trapped in numerous suboptimal
local minima.

Stochastic gradient descent (SGD) performs a parameter update for each training
example x(i) and label y (i)

θ = θ − α · ∇θJ(θ; x(i); y (i)) . (6)

SGD performs frequent updates with a high variance that cause the objective function
to fluctuate heavily.
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Deep Learning II

Algorithm 1 Stochastic gradient descent (SGD)

1: for number of epochs do
2: randomly shuffle data (x , y)

3: for number of data do
4: θ = θ − α · ∇θJ(θ; x(i); y (i))

5: end for
6: end for

Mini-batch gradient descent: update for every mini-batch of n training examples

θ = θ − α · ∇θJ(θ; x(i :i+n); y (i :i+n)) . (7)
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Deep Learning III

Algorithm 2 Mini-batch gradient descent

1: for number of epochs do
2: randomly shuffle data (x , y)

3: for batch in take out a batch from data of size m do
4: θ = θ − α · ∇θJ(θ; x(i :i+n); y (i :i+n))

5: end for
6: end for

Gradient descent optimization algorithms

SGD with momentum [4]. Let γ < 1 be the resistance, then

vt = γvt−1 + α∇θJ(θ − γvt−1)

θ = θ − vt .
(8)

The Adaptive Moment Estimation (Adam) [5] is often used in packages like
Tensorflow [6] for the gradient descent:
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Deep Learning IV

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t .
(9)

Adam stores an exponentially decaying average of past squared gradients vt and keeps
an exponentially decaying average of past gradients mt . They are estimates of the first
moment and the second moment of the gradients respectively producing a bias
(β1 ≈ 1 and β2 ≈ 1). This being opposed by

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(10)

leading to the actual gradient descent

θt+1 = θt −
η

√
v̂t + ε

m̂t . (11)
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Neural Networks: Introduction I

The general goal is to create artificial neural networks (graphs) (ANN) that imitate
to some extend the capabilities of the human brain:

learning

generalization

adaptivity

fault tolerance

...

We want this for example for

pattern classification

function approximation

...
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Neural Networks: Introduction II

Pioneering work was done by McCulloch and Pitts with the Perceptron [7, 8]. This
was extended by Minsky and Papert [9].

McCulloch and Pitts proposed a binary threshold model as a computational model for
an artificial neuron. Let x1, ..., xn be the input values and y = 0, 1 be the output. The
perceptron is defined by

y =

{
0,

∑
i xiwi ≤ b

1,
∑

i xiwi > b
. (12)

where w1, ...,wn are the synaptical weights that Rosenblat [8] introduced (see
Figure 4). This can be reformulated as

y = Θ(
n∑

j=1

wjxj − b) . (13)

This generates an output of 1 if the sum is above a certain threshold. Sometimes we
include b in the sum and set w0 = −b and x0 to a constant input x0 = 1.
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Neural Networks: Introduction III

Figure 4: Perceptron.

In this setting

positive weights correspond to excitatory synapses

negative weights correspond to inhibitory synapses.

Clearly one can also use other activation function like

piecewise linear

sigmoid neuron
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Neural Networks: Introduction IV

gaussian.

Most often used is the sigmoid function (here the logistic function)

g(x) =
1

1 + e−βx
. (14)

The above constructed node is then the basic unit in a network (graph) of nodes.
Thus the ANN’s are weighted directed graphs where

neuron ∼= node (15)

connection between neuron ∼= directed edge with weights (16)

Example: XOR
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Neural Networks: Introduction V

Figure 5: Perceptron XOR.

Connectionist models for gene regulation in the form of recurrent Hopfield [10]
networks have been proposed by Mjolsness and others [11–13] to describe regulatory
networks as directed graphs or matrices of interactions without restrictions on
connectivity. These continuous time networks model interphase expression of a cell
based on interaction weights that are free to take positive and negative real values.
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Neural Networks: Introduction VI

Figure 6: Example of a neural network topology with input and output layers and one hidden
layer.

19 / 121



Neural Networks: Introduction VII

Figure 7: Overview of possible architectural designs of neural networks. Image taken from
https://medium.com/@carynmccarthy15/a-beginners-guide-to-recurrent-neural-networks-bfacb27bddb6.

20 / 121



Backpropagation I

Prerequisite: Let s � t ((s � t)j = sj tj ) denote the Hadamard product (Schur
product), i.e., the elementwise product of the two vectors

Let C(w , b) be a cost function where w is a weight and b is a bias with two
assumptions about the form of the cost function:

a

b

quadratic cost function

C =
1
2n

∑
x

‖y(x)− aL(x)‖2 , (26)

C =
1
2
‖y − aL‖2 =

1
2

∑
j

(yj − aLj )2 . (27)

The goal of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b

alj = σ

(∑
k

w l
jka

l−1
k + blj

)
, (17)
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Backpropagation II

al = σ(w lal−1 + bl ) . (18)

to compute al we compute z l ≡ w lal−1 + bl weighted input to the neurons in layer l

al = σ(z l )

z l

z lj =
∑

k w
l
jka

l−1
k + blj

z lj is just the weighted input to the activation function for neuron j in layer l .

Let δlj be the error in the jth neuron in the lth layer:

δlj ≡
∂C

∂z lj
. (29)

Backpropagation provides a procedure to compute the error δlj . δ
l denotes the vector

of errors associated with layer l .

For the error in the output layer L we have
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Backpropagation III

δLj =
∂C

∂aLj
σ′(zLj ). (19)

Proof: We have

δLj =
∂C

∂zLj
(20)

and with the chain rule we obtain

δLj =
∑
k

∂C

∂aLk

∂aLk
∂zLj

(21)

=
∂C

∂aLj

∂aLj

∂zLj
. (22)

because the sum is over all neurons k in the output layer and the output activation aLk
of the kth neuron depends only on the weighted input zLj for the jth neuron when
k = j . If k 6= j ∂aLk/∂z

L
j is zero.
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Backpropagation IV

Since aLj = σ(zLj ) we write σ′(zLj ) we have Equation 22

δLj =
∂C

∂aLj
σ′(zLj ) (23)

proving our assumption.

δL = ∇aC � σ′(zL) . (24)

δL = (aL − y)� σ′(zL) . (25)

An equation for the error δl in terms of the error in the next layer, δl+1

δl = ((w l+1)T δl+1)� σ′(z l ) , (26)

Proof: We rewrite δlj = ∂C/∂z lj in terms of δl+1
k = ∂C/∂z l+1

k
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Backpropagation V

δlj =
∂C

∂z lj
(27)

=
∑
k

∂C

∂z l+1
k

∂z l+1
k

∂z lj
(28)

=
∑
k

∂z l+1
k

∂z lj
δl+1
k . (29)

Note that

z l+1
k =

∑
j

w l+1
kj alj + bl+1

k =
∑
j

w l+1
kj σ(z lj ) + bl+1

k (30)

and taking the derivative

∂z l+1
k

∂z lj
= w l+1

kj σ′(z lj ) . (31)

we get
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Backpropagation VI

δlj =
∑
k

w l+1
kj δl+1

k σ′(z lj ) . (32)

∂C

∂blj
= δlj . (33)

∂C

∂b
= δ, (34)

∂C

∂w l
jk

= al−1k δlj . (35)

∂C

∂w
= ainδout, (36)
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Backpropagation VII

Algorithm 3 Backpropagation Algorithm (single input)

1: repeat
2: Set the corresponding activation a1 for the input layer
3: for l = 2, 3, . . . , L do
4: z l = w lal−1 + bl

5: al = σ(z l )

6: end for
7: δL = ∇aC � σ′(zL)

8: for l = L− 1, L− 2, . . . , 2 do
9: δl = ((w l+1)T δl+1)� σ′(z l )

10: end for
11: ∂C

∂w l
jk

= al−1k δlj

12: ∂C
∂blj

= δlj

13: until convergence is reached
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Backpropagation VIII

Algorithm 4 Backpropagation Algorithm (batch input)

1: repeat
2: for each sample x do
3: Set the corresponding activation ax,1 for the input layer
4: for l = 2, 3, . . . , L do
5: z l = w lal−1 + bl

6: al = σ(z l )

7: end for
8: δL = ∇aC � σ′(zL)

9: for l = L− 1, L− 2, . . . , 2 do
10: δl = ((w l+1)T δl+1)� σ′(z l )
11: end for
12: end for
13: for l = L, L− 1, . . . , 2 do
14: w l → w l − η

m

∑
x δ

x,l (ax,l−1)T

15: bl → bl − η
m

∑
x δ

x,l

16: end for
17: ∂C

∂w l
jk

= al−1k δlj

18: ∂C
∂blj

= δlj

19: until convergence is reached
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Classification I

Let us look at the problem of classifying walks into random walk and self-avoiding
walk. Below are two images from a set of generated images.

random walk
Self avoiding walk
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Classification: Example

1 #from __future__ impor t p r i n t_ func t i o n , d i v i s i o n

3 impor t os
impor t numpy as np

5 impor t t e n s o r f l ow as t f
#impor t ma t p l o t l i b . p yp l o t as p l t

7

impor t ma t p l o t l i b
9 ma t p l o t l i b . use ( ’TkAgg ’ )

impor t ma t p l o t l i b . p y p l o t as p l t
11 from skimage impor t data as dt

from skimage impor t t r an s f o rm
13 from skimage . c o l o r impor t rgb2g ray

from s c i p y impor t misc
15 impor t random

17

# Large r sample f o r RW and SAW
19 # S i z e dependence o f the c l a s s i f i c a t i o n and r e c o g n i t i o n

# What has the network l e a r n e d

./progs/Walkclassifier.py
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Classification: Example

2

de f p l o t_se t ( images , s e t ) :
4

f o r i i n range ( l e n ( s e t ) ) :
6 p l t . s u bp l o t (1 , l e n ( s e t ) , i +1)

p l t . a x i s ( ’ o f f ’ )
8 p l t . imshow ( images [ s e t [ i ] ] , cmap=" gray " )

p l t . s u bp l o t s_ad j u s t ( wspace =0.5)
10

p l t . show ( )
12

pas s
14

16 de f load_data ( da ta_d i r e c to r y , l a b e l s , images , L ) :
d i r e c t o r i e s = [ d f o r d i n os . l i s t d i r ( d a t a_d i r e c t o r y )

18 i f os . path . i s d i r ( os . path . j o i n ( da ta_d i r e c to r y ,
d ) ) ]

20 f o r d i n d i r e c t o r i e s :

./progs/Walkclassifier.py
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Classification: Example

l a b e l_ d i r e c t o r y = os . path . j o i n ( da ta_d i r e c to r y , d )
2 f i l e_names = [ os . path . j o i n ( l a b e l_d i r e c t o r y , f )

f o r f i n os . l i s t d i r ( l a b e l_ d i r e c t o r y )
4 i f f . endsw i th ( " . png" ) ]

f o r f i n f i l e_names :
6 img = dt . imread ( f , as_gray=True )

cropped = img [ L/4:3∗L/4 ,L/4 :3∗L/4 ]
8 images . append ( cropped )

l a b e l s . append ( i n t ( d ) )
10

p r i n t ( l e n ( images ) )
12 p r i n t ( l e n ( l a b e l s ) )

pa s s
14

16 de f show_sample_pred ict ion ( sample_images , s amp l e_ labe l s ) :

18 f i g = p l t . f i g u r e ( f i g s i z e =(10 , 10) )
f o r i i n range ( l e n ( sample_images ) ) :

20 t r u t h = samp l e_ labe l s [ i ]

./progs/Walkclassifier.py
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Classification: Example

p r e d i c t i o n = p r e d i c t e d [ i ]
2 p l t . s u bp l o t (5 , 2 ,1+ i )

p l t . a x i s ( ’ o f f ’ )
4 c o l o r=’ g reen ’ i f t r u t h == p r e d i c t i o n e l s e ’ r ed ’

p l t . t e x t (40 , 10 , "Truth : {0}\ nP r e d i c t i o n : {1}" . fo rmat (
t ru th , p r e d i c t i o n ) ,

6 f o n t s i z e =12, c o l o r=c o l o r )
p l t . imshow ( sample_images [ i ] , cmap=" gray " )

8

p l t . show ( )
10

12

t f . set_random_seed (4711)
14

L = 500
16 crop_L = L / 2

18 ROOT_PATH = "/Use r s /heermann/ t e n s o r f l ow /Prog/Walk/ data /"

20 t r a i n_da t a_d i r e c t o r y = os . path . j o i n (ROOT_PATH, " T r a i n i n g " )

./progs/Walkclassifier.py
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Classification: Example

t e s t_da t a_d i r e c t o r y = os . path . j o i n (ROOT_PATH, " Tes t i ng " )
2

l a b e l s = [ ]
4 images = [ ]

6 load_data ( t r a i n_da t a_d i r e c t o r y , l a b e l s , images , L )
images = np . a r r a y ( images )

8

s e t = [ 1 , 2 , 3 , 4 ]
10 p l o t_se t ( images , s e t )

12

g = t f . Graph ( )
14

t f . image . pe r_ image_standa rd i za t i on ( images )
16

18

# I n i t i a l i z e p l a c e h o l d e r s
20 with g . a s_de f au l t ( ) :

./progs/Walkclassifier.py
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Classification: Example

2 x = t f . p l a c e h o l d e r ( dtype = t f . f l o a t 3 2 , shape = [ None , crop_L ,
crop_L ] )

y = t f . p l a c e h o l d e r ( dtype = t f . i n t32 , shape = [ None ] )
4

# F l a t t e n the i n pu t data
6 image s_f l a t = t f . c o n t r i b . l a y e r s . f l a t t e n ( x )

8 # Fu l l y connected l a y e r
f u l l y_conne c t ed1 = t f . c o n t r i b . l a y e r s . f u l l y_conne c t e d (
images_f la t , 12 , t f . nn . r e l u )

10 f u l l y_conne c t ed2 = t f . c o n t r i b . l a y e r s . f u l l y_conne c t e d (
fu l l y_connec t ed1 , 6 , t f . nn . r e l u )
l o g i t s = t f . c o n t r i b . l a y e r s . f u l l y_conne c t e d ( fu l l y_connec t ed2 ,
12 , t f . nn . r e l u )

12

# Def i n e a l o s s f u n c t i o n
14 l o s s = t f . reduce_mean ( t f . nn .

spa r se_so f tmax_cros s_ent ropy_wi th_log i t s ( l a b e l s = y ,

l o g i t s = l o g i t s ) )
16 # Def i n e an o p t im i z e r

t ra in_op = t f . t r a i n . AdagradOpt imize r ( l e a r n i n g_ r a t e =0.001 ,
name="Opt im i ze r " ) . m in im ize ( l o s s )

18

# Conver t l o g i t s to l a b e l i n d e x e s
20 co r r e c t_pred = t f . argmax ( l o g i t s , 1)

./progs/Walkclassifier.py
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Classification: Example

2 # Def i n e an accu racy me t r i c
a c cu racy = t f . reduce_mean ( t f . c a s t ( co r r ec t_pred , t f . f l o a t 3 2 ) )

4

p r i n t ( " image s_f l a t : " , image s_f l a t )
6 p r i n t ( " l o g i t s : " , l o g i t s )

p r i n t ( " l o s s : " , l o s s )
8 p r i n t ( " p r e d i c t e d_ l a b e l s : " , co r r e c t_pred )

10

# Add ops to save and r e s t o r e a l l the v a r i a b l e s .
12 s a v e r = t f . t r a i n . Save r ( )

s e s s = t f . S e s s i o n ( )
14

s e s s . run ( t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( ) )
16

f o r i i n range (201) :
18 p r i n t ( ’EPOCH ’ , i )

_, accu racy_va l = s e s s . run ( [ t ra in_op , accu racy ] ,
f e ed_d i c t={x : images , y : l a b e l s })

20 i f i % 10 == 0 :

./progs/Walkclassifier.py
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Classification: Example

p r i n t ( " Loss : " , l o s s )
2 p r i n t ( ’DONE WITH EPOCH ’ )

4 save_path = s a v e r . s ave ( s e s s , " . /my−model . ckpt " )
s a v e r . s ave ( s e s s , ’ . /my−model ’ )

6 # Di s p l a y l a y e r s
l a y e r s = {v . op . name : v f o r v i n t f . t r a i n a b l e_ v a r i a b l e s ( ) }

8 p r i n t ( l a y e r s )
#

10

12 # Pick 10 random images
sample_indexes = random . sample ( range ( l e n ( images ) ) , 10)

14 sample_images = [ images [ i ] f o r i i n sample_indexes ]
s amp l e_ labe l s = [ l a b e l s [ i ] f o r i i n sample_indexes ]

16

# Run the " co r r e c t_pred " op e r a t i o n
18 p r e d i c t e d = s e s s . run ( [ co r r e c t_pred ] , f e ed_d i c t={x : sample_images

}) [ 0 ]

20 # Pr i n t the r e a l and p r e d i c t e d l a b e l s

./progs/Walkclassifier.py
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Classification: Example

p r i n t ( s amp l e_ labe l s )
2 p r i n t ( p r e d i c t e d )

4 # Di s p l a y the p r e d i c t i o n s and the ground t r u t h v i s u a l l y .

6 show_sample_pred ict ion ( sample_images , s amp l e_ labe l s )

8

#
####################################################################

10 # Load the t e s t data
t e s t_ l a b e l s = [ ]

12 te s t_images = [ ]

14 load_data ( t e s t_da ta_d i r e c to r y , t e s t_ l a b e l s , test_images , L )
tes t_images = np . a r r a y ( tes t_images )

16 t e s t_s e t = [ 4 , 5 , 6 , 7 ]
p l o t_se t ( test_images , t e s t_s e t )

18

t f . image . pe r_ image_standa rd i za t i on ( tes t_images )

./progs/Walkclassifier.py
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Classification: Example

2 # Run p r e d i c t i o n s a g a i n s t the f u l l t e s t s e t .
p r e d i c t e d = s e s s . run ( [ co r r e c t_pred ] , f e ed_d i c t={x : te s t_images })

[ 0 ]
4

# Ca l c u l a t e c o r r e c t matches
6 match_count = sum ( [ i n t ( y == y_) f o r y , y_ i n z i p ( t e s t_ l a b e l s ,

p r e d i c t e d ) ] )
p r i n t ( ’Match Count = ’ + s t r ( match_count ) + ’ out o f =’ + s t r ( l e n (

tes t_images ) ) )
8

10 s e s s . c l o s e ( )

./progs/Walkclassifier.py
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Classification: Example I

The result of the classifcation after minimal training is already very impressive.
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Hidden Markov Model I
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Example I

We would like to identify stretches of sequences that are actually functional (code
for proteins or have regulatory functions) from non-coding or junk sequences.

In prokaryotic DNA we have only two kinds of regions, ignore regulatory
sequences which are coding (+) and non-coding (-) and the four letters A,C,G,T.

A G

C T
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Hidden Markov Model I

This simulates a very common phenomenon [14]:

There is some underlying dynamic system running along according to simple
and uncertain dynamics, but we cannot see it.

All we can see are some noisy signals arising from the underlying system. From
those noisy observations we want to do things like predict the most likely
underlying system state, or the time history of states, or the likelihood of the next
observation

What are Hidden Markov Models good for?

useful for modeling protein/DNA sequence patterns

probabilistic state-transition diagrams

Markov processes - independence from history

hidden states

34 / 121



Where does one use HMM’s I

protein families

DNA patterns

secondary structure (helix, strand, coil (each has 20x20 table with transition
frequencies between neighbors ai → ai+1))

protein fold recognition

fold classification

gene silencing

...
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Example I

Example: CpG - Islands

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is
followed by a guanine nucleotide in the linear sequence of bases along its 5′ → 3′
direction. (definition from Wikipedia)

Regions labeled as CpG - islands −→ + model
Regions labeled as non-CpG - islands −→ - model
Maximum likelihood estimators for the transition probabilities for each model

ast =
cst∑
t′ cst′

and analogously for the - model. cst is the number of times letter t followed letter s
in the labeled region.

36 / 121



Definition I

A Hidden Markov Model is a two random variable process, in which one of the
random variables is hidden, and the other random variable is observable.

It has a finite set of states, each of which is associated with a probability
distribution.

Transitions among the states are governed by transition probabilities.

In a particular state an observation can be generated, according to the associated
probability distribution.

It is only the observation, not the state visible to an external observer, and
therefore states are “hidden” from the observer.
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Example I

For DNA, let + denote coding and - non-coding. Then a possible observed sequence
could be

O = AACCTTCCGCGCAATATAGGTAACCCCGG

and

Q = −− + + + + + + + + + + + + + + + + +−−−−−−−−

Question: How can one find CpG - islands in a long chain of nucleotides?

Merge both models into one model with small transition probabilities between the
chains.
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Definition (formal) I

A Hidden Markov Model (HMM) λ =< Y ,S ,A,B > consists of:

an output alphabet Y = {1, ..., b}

a state space S = {1, ..., c} with a unique initial state s0

a transition probability distribution A(s′|s)

an emission probability distribution B(y |s, s′)

HMMs are equivalent to (weighted) finite state automata with outputs on
transitions.

Unlike MMs, constructing HMMs, estimating their parameters and computing
probabilities are not so straightforward.
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Definition (formal) II

s1

s2

s3

p31

p11

p22

p13
p23

40 / 121



Probabilities I

Given a HMM λ and a state sequence S = (s1, ..., st+1), the probability of an output
sequence O = (o1, ..., ot) is

P(O|S, λ) =
t∏

i=1

P(oi |si , si+1, λ) =
t∏

i=1

B(oi |si , si+1) . (37)

Given λ, the probability of a state sequence S = (s1, ..., st+1) is

P(S |λ) =
t∏

i=1

P(si+1|si ) =
t∏

i=1

A(si+1|si ) . (38)

Of importance is the probability of an output sequence O = (o1, ..., ot) under a given
λ. It is easy to show that the straightforward computation yields

P(O|λ) =
∑
S

t∏
i=1

A(si+1|si )B(oi |si , si+1) (39)

with a computational complexity of (2c + 1) ∗ ct+1 multiplications.
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Example I

Example: Multiple Sequence Alignments

In theory, making an optimal alignment between two sequences is computationally
straightforward (Smith-Waterman algorithm), but aligning a large number of
sequences using the same method is almost impossible (e.g. O(tN)).

The problem increases exponentially with the number of sequences involved (the
product of the sequence lengths).
Statistical Methods:

Expectation Maximization Algorithm (deterministic).
Gibbs Sampler (stochastic).
Hidden Markov Models (stochastic).

Advantages for HMM: theoretical explanation, no sequence ordering, no insertion
and deletion penalties, using prior information.

Disadvantage for HMM: large number of sequences for training.
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Example II
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1. .4 1. 1.1.

.6
.6

.4ACA---ATG

TCAACTAT
C

ACAC--AGC

AGA---ATC

ACCG--ATC

• 5 matches. A, 2xC, T, G
• 5 transitions in gap region

• C out, G out
• A-C, C-T, T out
• Out transition 3/5
• Stay transition 2/5

ACA---ATG 0.8x1x0.8x1x0.8x0.4x1x0.8x1x0.2 = 3.3x10-2
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Basic Problem I

There are three basic problems:

1 Given a model, how likely is a specific sequence of observed values (evaluation
problem).

2 Given a model and a sequence of observations, what is the most likely state
sequence in the model that produces the observations (decoding problem).

3 Given a model and a set of observations, how should the model’s parameters be
updated so that it has a high probability of generating the observations (learning
problem).
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Forward algorithm I

We define αs(i) as the probability being in state s at position i :

αs(i) = P(o1, ..., oi , si = s|λ) . (40)

Base case: αs(1) if s = s0 and αs(0) = 0 otherwise

Induction:
αs(i + 1) = max

s∈S
A(s|s′)B(oi |s′, s)αs(i) . (41)

Finally, at the end:
P(o1, ..., ok |λ) =

∑
s∈S

αs(k) . (42)

Partial sums could as well be computed right to left (backward algorithm), or
from the middle out

In general, for any position i :

P(O|λ) =
∑
s∈S

αs(i)βs(i) . (43)

This algorithm could be used, e.g. to identify which λ is most likely to have
produced an output sequence O.
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Forward algorithm II

What is the most probable path given observations (decoding problem)?

Given o1, ..., ot what is

argmaxSP(s, o1, ...ot |λ) ? (44)

Slow and stupid answer:

argmaxS
P(o1, ..., ot |s)P(s)

P(o1, ..., ot)
. (45)
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Viterbi algorithm I

We define δs(i) as the probability of the most likely path leading to state s at
position i :

δs(i) = max
s1,...,si−1

P(s1, ..., si−1, o1, ..., oi−1, si = s|M) . (46)

Base case: δs(1) if s = s0 and δs(0) = 0 otherwise

Again we proceed recursively:

δs(i + 1) = max
s∈S

A(s|s′)B(oi |s′, s)δs(i) (47)

and since we want to know the identity of the best state sequence and not just its
probability, we also need

Ψ(i + 1) = argmaxs∈SA(s|s′)B(oi |s′, s)δs(i) . (48)

Finally, we can follow Ψ backwards from the most likely final state.

The Viterbi algorithm efficiently searches through |S |T paths for the one with the
highest probability in O(T |S |2) time.
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Viterbi algorithm II

In practical applications, use log probabilities to avoid underflow errors.

Can be easily modified to produce the n best paths.

A beam search can be used to prune the search space further when |S| is very
large (n-gram models).
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n-gram Models I

Predicting the next state sn depending on s1, ..., sn−1 results in

P(sn|s1, ..., sn−1) . (49)

Markov Assumption (n − 1)th order : last n − 1 states are in the same
equivalence class.
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Parameter estimation I

Given an HMM with a fixed architecture, how do we estimate the probability
distributions A and B?

If we have labeled training data, this is not any harder than estimating
non-Hidden Markov Models (supervised training):

A(s′|s) =
C(s → s′)∑
s′′ C(s → s′′)

(50)

B(o|s, s′) =
C(s → s′, o)

C(s → s′)
(51)
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Forward-Backward Algorithm I

Also known as the Baum-Welch algorithm.
Instance of the Expectation Maximization (EM) algorithm:

1 Choose a model at random.

2 E: Find the distribution of state sequences given the model.

3 M: Find the most likely model given those state sequences.

4 Go back to 2.

Our estimate of A is:

A(s′|s) =
E [C(s → s′)]

E [C(s →?)]
(52)
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Forward-Backward Algorithm II

We estimate E [C(s → s′)] via τt(s, s′), the probability of moving from state s to
state s′ at position t given the output sequence O:

τt(s, s
′) = P(st = s, st+1 = s′|O, λ) (53)

=
P(st = s, st+1 = s′,O|λ)

P(O|λ)
(54)

=
αs(t)A(s|s′)B(ot+1|s, s′)βs′ (t + 1)∑

s′′ αs′′
. (55)

This lets us estimate A:

A(s′|s) =

∑
t τt(s, s

′)∑
t

∑
s′′ τt(s, s

′′)
. (56)

We can estimate B along the same lines, using σt(o, s, s′), the probability of
emitting o while moving from state s to state s′ at position t given the output
sequence O.

Alternate re-estimating A from τ , then τ from A, until estimates stop changing.

If the initial guess is close to the right solution, this will converge to an optimal
solution.
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Reinforcement Learning I

The fundamental idea of reinforcement learning is to interaction with the environment
and learn from this interaction. Let S denote the states that the environment can be
in and A the actions that an agent interacting with the environment can take [15–17].
For each interaction the agent gets a return or reward r ∈ R. The agent is trained
maximizing the cumulative reward. The actions are chosen according to a policy π.

Image taken from: Kenji

Doya (DOI:

10.2976/1.2732246)

Environment

s t+1

a t
r t+1

Agent

πθ s t

a t

State cycle for the
reinforcement

learning
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Reinforcement Learning II

Figure 8

Let π be a policy mapping a state to an action

π : S → A (57)

s 7→ a (58)

The state cycle (c.f. Figure 8) is

t : st → at → st+1 (59)

(st , at , st+1)→ rt+1 (60)

Let τ be a sequence or trajectory under π

τ : (s1, a1, r1, ..., sT , aT , rT ) ∼ π (61)
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Reinforcement Learning III

where T is the horizon. We have ai ∼ πθ(ai |si ) and si ∼ P(si |si−1, ai−1). Since the
next state in the trajectory depends only on the immediate predecessor we have

Pθ(s1, a1, r1, ..., sT , aT , rT ) = µ(s1)
T∏
i=2

π(ai |si )P(si |si−1, ai−1) (62)

that the probability P to get the trajectory τ is split into individual transitions and
represents the dynamics (Markov chain). µ is the starting state distribution. Such a
sequence can be obtained using Monte Carlo methods.

The policy function is usually parameterized with a parameter θ:

πθ(s) = π(a | s, θ) = p(a | s; θ) . (63)

Our objective is to maximize the return

max
θ

Eτ∼πθ [R(τ)] = max
θ

∫
πθ(τ)R(τ)dτ (64)

with the return function R that usually is a function of (si , ai , si+1). Hence we want to
find
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Reinforcement Learning IV

θ∗ = argmaxθ Eτ∼πθ [
∑T

t r(st , at)] (65)

θ∗ = argmaxθ E(s.a)∼πθ(s,a)[r(s, a)] (66)

for finite horizon and infinite horizon respectively. Maximizing could be done by taking
the derivative with respect to the return. However, the return may not be
differentiable. This could be rectified by using a neural network (see later). We will
take the approach of the policy gradient, i.e., taking the derivative with respect to
the policy (parameter θ).

We have assumed that the policy is stochastic, i.e., mapping state s under the
condition of parameter value θ to a with probability p. We distinguish between
deterministic and stochastic policies:

deterministic policy: π(a | s, θ) = 1,

Stochastic policy: π(a | s, θ) = p(a | s; θ) .

We have the choice to optimize values or actions:
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Reinforcement Learning V

Values policy: Learn the interaction between states, actions and subsequent
rewards.

Action policy: Determine which is the best action to choose given the above.

Let Vπ(s) be the value of state s following policy π (value-state function):

Vπ(s) = Ea∼π[Gt |St = s] (67)

where

Gt =
T∑

k=0

γk rt+k+1 (68)

is the cumulative discounted return with discount parameter γ (0 < γ ≤ 1).

Further, let Qπ(s, a) be the action-value function

Qπ(s, a) = Ea∼π[Gt |St = s,At = a] (69)

and
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Reinforcement Learning VI

Aπ(s, a) = Qπ(s, a)− Vπ(s) (70)

the advantage telling us how much better or worse the action a is. Note that in
complex formulae, for clarity, we are dropping the subscript θ.

We can define the reward function in terms of the state-value or action-state function
as

J(θ) =
∑
s∈S

dπ(s)Vπ(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (71)

where dπ(s) = limt→∞ P(st = s|s0, πθ), i.e., the stationary distribution of the Markov
chain of the policy π.

We want to take the gradient of the reward function to maximize the return with
respect to the policy parameterized by θ. Before we do this, consider the following:
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Reinforcement Learning VII

∇θEX∼p(X |θ)[f (X )] = ∇θ
(∫
X

f (X )p(X | θ)dX

)
(72)

=

∫
X

f (X )∇θ (p(X | θ)) dX (73)

=

∫
X

f (X )p(X | θ)
∇θ (p(X | θ))

p(X | θ)
dX (74)

=

∫
X

f (X )p(X | θ)∇θ (log p(X | θ)) dX (75)

= EX∼p(X |θ) [f (X )∇θ (log p(X | θ))] . (76)

Hence, for the policy this implies

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
= πθ(s, a)∇θ log πθ(s, a) . (77)

We define the score function to be

∇θ log πθ(s, a) . (78)
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Reinforcement Learning VIII

It describes how sensitive the stochastic policy π to is to changes in θ, i.e. how likely
the trajectory is under the current policy.

Example: Policy function

Let us look at the following example of the policy function for a linear model for the
unnormalized log-probability: φ(s, a)T θ i.e. weighting of the actions using a linear
combination of features φ(s, a)

The score function for a softmax policy is:

πθ(s, a) =
eφ(s,a)T θ∑

a′∈A eφ(s,a′)T θ
(79)

∇θ log πθ(s, a) = φ(s, a)− Eπθ [φ(s, ·)] (80)

hθ(x) =
1

1 + e−θT x
. (81)

60 / 121



Reinforcement Learning IX

Stochastic Gradient Policy Theorem

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ (s, a)] . (82)

Hence, the computation of the policy gradient reduces to a simple expectation. Thus,
we are looking for sampling algorithms were trajectories are generated, the action
value or value state function being evaluated along the trajectory (sometimes called
play out or episode) and the gradient of the log of the policy computed.

To show the above statement, we take the following steps (see Lilian Weng
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html):
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Reinforcement Learning X

∇θVπ(s) =∇θ
[∑
a∈A

πθ(a|s)Qπ(s, a)
]

(83)

=
∑
a∈A

[
∇θπθ(a|s)Qπ(s, a) + πθ(a|s)∇θQπ(s, a)

]
(84)

=
∑
a∈A

[
∇θπθ(a|s)Qπ(s, a) + πθ(a|s)∇θ

∑
s′,r

P(s′, r |s, a)(r + Vπ(s′))
]
(85)

=
∑
a∈A

[
∇θπθ(a|s)Qπ(s, a) + πθ(a|s)

∑
s′,r

P(s′, r |s, a)∇θVπ(s′)
]

(86)

=
∑
a∈A

[
∇θπθ(a|s)Qπ(s, a) + πθ(a|s)

∑
s′

P(s′|s, a)∇θVπ(s′)
]
. (87)
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Reinforcement Learning XI

∇θVπ(s) =φ(s) +
∑
a

πθ(a|s)
∑
s′

P(s′|s, a)∇θVπ(s′) (88)

=φ(s) +
∑
s′

∑
a

πθ(a|s)P(s′|s, a)∇θVπ(s′) (89)

=φ(s) +
∑
s′
ρπ(s → s′, 1)∇θVπ(s′) (90)

=φ(s) +
∑
s′
ρπ(s → s′, 1)∇θVπ(s′) (91)

=φ(s) +
∑
s′
ρπ(s → s′, 1)[φ(s′) +

∑
s′′

ρπ(s′ → s′′, 1)∇θVπ(s′′)] (92)

=φ(s) +
∑
s′
ρπ(s → s′, 1)φ(s′) +

∑
s′′

ρπ(s → s′′, 2)∇θVπ(s′′) (93)

=φ(s) +
∑
s′
ρπ(s → s′, 1)φ(s′) +

∑
s′′

ρπ(s → s′′, 2)φ(s′′) + ... (94)

= . . .; Repeatedly unrolling the part of ∇θV
π(.) (95)

=
∑
x∈S

∞∑
k=0

ρπ(s → x , k)φ(x) . (96)
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Reinforcement Learning XII

∇θJ(θ) = ∇θVπ(s0) (97)

=
∑
s

∞∑
k=0

ρπ(s0 → s, k)φ(s) (98)

=
∑
s

η(s)φ(s) (99)

=
(∑

s

η(s)
)∑

s

η(s)∑
s η(s)

φ(s) (100)

∝
∑
s

η(s)∑
s η(s)

φ(s) (101)

=
∑
s

dπ(s)
∑
a

∇θπθ(a|s)Qπ(s, a) . (102)

∑
s η(s) is the average length of the episode in the continuous case. And further
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Reinforcement Learning XIII

∇θJ(θ) ∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ(s, a)∇θπθ(a|s) (103)

=
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a)
∇θπθ(a|s)

πθ(a|s)
(104)

= Eπ[Qπ(s, a)∇θ lnπθ(a|s)] . (105)
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Reinforcement Learning XIV

initialize model π and s

generate samples from policy π

fit Qπ ,Vπ to estimate the returns

improve policy

Actually, the question is how to compute the score function

∇θ log πθ(s, a) (106)
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Reinforcement Learning XV

specifically under light that gradients can be very noisy. They suffer from high
variance and low convergence. We have

∇θ logPθ(τ) = ∇ log

(
P(s1)

T∏
t=1

πθ(at |st)P(st+1|st , at)
)

(107)

= ∇θ

[
log µ(s1) +

T∑
t=1

(log πθ(at |st) + logP(st+1|st , at))

]
(108)

= ∇θ
T∑

t=1

log πθ(at |st) . (109)

Using gradient ascend

θ ← θ + α∇f (x) (110)

we can write the generic algorithm is as follows:
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Reinforcement Learning XVI

Algorithm 5 Gradient Policy

1: repeat
2: ∇θJ(θ) = 1

N

∑N
i=1(

∑T
t=1∇θ log πθ(si,t , ai,t))(

∑T
t=1 R(si,t , ai,t))

3: θ ← θ + α∇θJ(θ)

4: until finished

α is the learning rate determining the rate of convergence.
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Monte-Carlo Policy Evaluation I

The Monte Carlo policy gradient or REINFORCE estimates (learns) the value state
function Vπ from episodes under policy π. Hence, we generate episodes

s1, a1, . . . sT , aT ∼ π . (111)

The Monte-Carlo policy evaluation uses empirical mean return instead of expected
return. Note that for the cumulated discounted return we have

Qπ(st , at) = Eπ[Gt |at , at ] (112)

and hence we can write

∇θJ(θ) = Eπ[Qπ(s, a)∇θ lnπθ(a|s)] (113)

= Eπ[Gt∇θ lnπθ(at |st)] (114)

and sample the return. Our goal is find the policy, i.e. the value of θ maximizing the
return
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Monte-Carlo Policy Evaluation II

θ∗ = argmax
θ

Eπ

[
T∑

t=1

γt rt

]
. (115)
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Monte-Carlo Policy Evaluation: Algorithm I

A generic version is listed in Algorithm 6.

Algorithm 6 Generic Monte-Carlo Policy Evaluation: REINFORCE

1: Initialize the policy parameter θ
2: repeat
3: Generate episode using πθ ∼ (s1, a1, ..., aT , sT )

4: for t in range (1,T ) do
5: Evaluate Gt

6: θ ← θ + αγtGt∇θ lnπθ(at |st)
7: end for
8: until false
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Monte Carlo Policy Gradient: Example I

α

F

g

x,v

vT

Figure 9: Balancing of a stick
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Monte Carlo Policy Gradient: Example II

The task at hand is to balance a stick in a one-dimensional setting. The stick is
mounted frictionless on a rail and can be moved to left and to the right. The
stick can rotate and is subject to gravitation (for info on the gym environment
implementing the balance stick see
https://github.com/openai/gym/wiki/CartPole-v0).

Neglecting friction, the equations of motion are [18]:

ẍ = .
F + mp l

(
α2 sinα− α̈ cosα

)
mc + mp

(116)

α̈ =
g sinα+ cosα

(
.−F−mpl α̇

2 sinα
mc+mp

)
l
(
4
3 −

mp cosα2

mc+mp

) . (117)

In this example we assume that there are two action a = 0, 1 or a = −1,+1
corresponding to left and right. The state of the system is given by a state
vector with the components s =(position (x), velocity (v), stick angle (α),
velocity at tip (vT )).
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Monte Carlo Policy Gradient: Example III

Table 1: openai CartPole v0 states (https://openai.com/resources/)

Num Observation Min Max
0 Cart Position -2.4 2.4
1 Cart Velocity -Inf Inf
2 Pole Angle ∼ −41.8◦ ∼ 41.8◦

3 Pole Velocity At Tip -Inf Inf

Since our action is binary, we can choose the logistic function as part of the
policy π

L(x) =
1

1 + e−x
. (118)

We can define the policy π as

πθ(s, a = 0) = 1− L(sT θ) (119)

πθ(s, a = 1) = L(sT θ) . (120)
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Monte Carlo Policy Gradient: Example IV

Our task is to estimate the state action function

Qπ(s, a) (121)

from the discounted return function

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT−t rT (122)

where the reward is 1 for every step taken, including the termination step.

J(θ) ≈
T∑

t=1

π(at | st , θ)At . (123)

For one episode we have

∇θJ(θ) ≈
T∑

t=1

Gt∇θ log πθ(s, a) (124)

d

dx
sigmoid(x) = sigmoid(x)(1− sigmoid(x)) . (125)

The problem is considered solved when the average reward is greater than or
equal to 195.0 over 100 consecutive trials.
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Monte Carlo Policy Gradient: Example

1
def episode(theta , max_episode_length =1000):

3
observation = env.reset()

5
actions = []

7 states = []
rewards = []

9 done = False

11 i = 0

13 while not done:

15 i+=1

17 action = get_action(theta , observation)
states.append(observation)

19 actions.append(action)
observation , reward , done , info = env.step(action)

21 rewards.append(reward)

23 if i > max_episode_length:
break

25
return np.array(rewards), np.array(states), np.array(actions)
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Monte Carlo Policy Gradient: Example

2 def discounted_sum_of_rewards(rewards , gamma):

4 cum = np.zeros_like(rewards)
c = 0.0

6 for i, r in enumerate(rewards [:: -1]):
c = r + gamma * c

8 cum[i] = c
return cum[::-1]
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Monte Carlo Policy Gradient: Example I

(a) Example 1 (b) Example 2

Figure 10: Two examples of balancing of a stick using Monte Carlo policy gradient
reinforcement learning. Max play out length was 1000 and 1000 episodes were calculated.
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Monte-Carlo Policy Evaluation: Algorithm I

Algorithm 7 Generic Monte-Carlo Policy Evaluation

1: Given π the policy to be evaluated
2: Initialize V randomly
3: Returns(s) ← empty list for all s ∈ S

4: repeat
5: Generate episode using π
6: for s in trial do
7: R ← return following the first occurrence of s
8: Append R to Returns(s)
9: V (s)← average(Returns(s))

10: end for
11: until false

Bellman Equation:

Vπ(s) =
∑
a

π(a | s)

Ra
s + γ

∑
s′∈S

Pa
s,s′V

π(s′)

 . (126)
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Monte-Carlo Policy Evaluation: Neural Network Policy I

This works well because the output is a probability over available actions.

If we feed it with a neural network, we will get higher values and thus we will be
more likely to choose the actions that we learned produce a better reward.

In the long-run, this will trend towards a deterministic policy, π(a | s, θ) = 1, but
it will continue to explore as long as one of the probabilities does not dominate
the others (which will likely take some time).

For the algorithm we are going to assume

a differentiable policy parameterization π(a | s, θ)

and define the step-size α > 0.
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Monte-Carlo Policy Evaluation: Neural Network Policy II

Algorithm 8 Generic Monte-Carlo Policy Evaluation Neural Network

1: Initialize policy parameters θ
2: repeat
3: Generate episode using π
4: for N batches do
5: Generate an episode s0, a0, r1, ..., sT−1, aT−1, rT , following π(a | s, θ)

6: for t = 0, ...,T − 1 do
7: Gt ← from step t

8: end for
9: Calculate the loss L(θ) = − 1

N

∑T
t ln(γtGtπ(at | st , θ))

10: Update policy parameters through backpropagation: θ := θ + α∇θL(θ)

11: end for
12: until n episodes

We are going to apply the neural network approach to the balancing of a stick
problem defined above. We will be using a fully connected neural network as shown in
Figure 11. The layer size is halved from one layer to the next. The last layer
essentially represents a binary decision to move left or right.
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Monte-Carlo Policy Evaluation: Neural Network Policy III

INPUT
FC

HIDDEN 1
FC

HIDDEN 2
FC

OUTPUT

Figure 11: Principle design of the neural network to be used in the learning of the policy
gradient in our example. All layers are fully connected. Only the last layers in this graph show
the actual connectivity.
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Monte Carlo Policy Gradient: Neural Network

1 import gym
import tensorflow as tf

3 from tensorflow.contrib.layers import fully_connected
import warnings

5

class policy_estimator(object):
7

def __init__(self , sess , env):
9 # Pass TensorFlow session object

self.sess = sess
11 # Get number of inputs and outputs from environment

self.n_inputs = env.observation_space.shape [0]
13 self.n_outputs = env.action_space.n

self.learning_rate = 0.01
15

# Define number of hidden nodes
17 self.n_hidden_nodes = 256

19 # Set graph scope name
self.scope = "policy_estimator"

83 / 121



Monte Carlo Policy Gradient: Neural Network

2 # Create network
with tf.variable_scope(self.scope):

4 initializer = tf.contrib.layers.xavier_initializer ()

6 # Define placholder tensors for state , actions ,
# and rewards

8 self.state = tf.placeholder(tf.float32 ,
[None , self.n_inputs], name=’state’)

10 self.rewards = tf.placeholder(tf.float32 ,
[None], name=’rewards ’)

12 self.actions = tf.placeholder(tf.int32 ,
[None], name=’actions ’)

14

layer_1 = fully_connected(self.state ,
16 self.n_hidden_nodes ,

activation_fn=tf.nn.swish ,
18 weights_initializer=initializer)

layer_2 = fully_connected(layer_1 ,
20 int(self.n_hidden_nodes /2),
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Monte Carlo Policy Gradient: Neural Network

activation_fn=tf.nn.swish ,
2 weights_initializer=initializer)

layer_3 = fully_connected(layer_2 ,
4 int(self.n_hidden_nodes /4),

activation_fn=tf.nn.swish ,
6 weights_initializer=initializer)

layer_4 = fully_connected(layer_3 ,
8 int(self.n_hidden_nodes /8),

activation_fn=tf.nn.swish ,
10 weights_initializer=initializer)

layer_5 = fully_connected(layer_4 ,
12 int(self.n_hidden_nodes /16),

activation_fn=tf.nn.swish ,
14 weights_initializer=initializer)

layer_6 = fully_connected(layer_5 ,
16 int(self.n_hidden_nodes /32),

activation_fn=tf.nn.swish ,
18 weights_initializer=initializer)

output_layer = fully_connected(layer_6 ,
20 self.n_outputs ,
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Monte Carlo Policy Gradient: Neural Network

activation_fn=None ,
2 weights_initializer=initializer)

4 # Get probability of each action
self.action_probs = tf.squeeze(

6 tf.nn.softmax(output_layer -
tf.reduce_max(output_layer)))

8

# Get indices of actions
10 indices = tf.range(0, tf.shape(output_layer)[0]) \

* tf.shape(output_layer)[1] + self.actions
12

selected_action_prob = tf.gather(
14 tf.reshape(self.action_probs , [-1]),indices)

16 # Define loss function
self.loss = -tf.reduce_mean(

18 tf.log(selected_action_prob) * self.rewards)

20 # Get gradients and variables
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Monte Carlo Policy Gradient: Neural Network

self.tvars = tf.trainable_variables(self.scope)
2 self.gradient_holder = []

for j, var in enumerate(self.tvars):
4 self.gradient_holder.append(

tf.placeholder(tf.float32 ,
6 name=’grads ’ + str(j)))

8 self.gradients = tf.gradients(self.loss ,
self.tvars)

10

# Minimize training error
12 self.optimizer = tf.train.AdamOptimizer(

self.learning_rate)
14 self.train_op = self.optimizer.apply_gradients(

zip(self.gradient_holder , self.tvars))
16

18 def predict(self , state):
probs = self.sess.run([self.action_probs],

20 feed_dict ={self.state: state})[0]
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Monte Carlo Policy Gradient: Neural Network

return probs
2

4 def update(self , gradient_buffer):
feed = dict(zip(self.gradient_holder , gradient_buffer))

6 self.sess.run([self.train_op], feed_dict=feed)

8

def get_vars(self):
10 net_vars = self.sess.run(

tf.trainable_variables(self.scope))
12 return net_vars

14

def get_grads(self , states , actions , rewards):
16 grads = self.sess.run([self.gradients],

feed_dict ={
18 self.state: states ,

self.actions: actions ,
20 self.rewards: rewards
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Monte Carlo Policy Gradient: Neural Network

})[0]
2 return grads
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Stability I

Stability:

Reinforcement learning is known to be unstable or even to diverge when a
nonlinear function approximator such as a neural network is used to
represent the action-value (also known as Q) function. This instability has
several causes: the correlations present in the sequence of observations, the
fact that small updates to Q may significantly change the policy and
therefore change the data distribution, and the correlations between the
action-values and the target values [19].
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Stability II
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Stability III

Figure 12: Demonstration of the variance involved in the REINFORCE algorithm. Here results
from the application of neural network learning of the policy is shown. Shown are results for a
neural network where the first layer consists of 128 fully connected nodes as shown
schematically in Figure 11. The episode length was a maximum of 100.
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Stability IV
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Figure 13: Shown are results for a neural network where the first layer consists of 256 fully
connected nodes as shown schematically in Figure 11. The sample used an episode length of a
maximum of 200.
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REINFORCE Algorithm with Baseline I

To reduce the variance, the standard is to introduce a function b(st) inside the
expectation on which we are computing the gradient. b is supposed to be an expected
return. Let R(τ) =

∑T−1
t=0 rt where we have set the discount parameter equal to one.

We can write

∇θEτ∼πθ

[
R(τ)

]
= Eτ∼πθ

[(
T−1∑
t=0

rt

)
· ∇θ

(
T−1∑
t=0

log πθ(at |st)
)]

(127)

= Eτ∼πθ

T−1∑
t′=0

rt′
t′∑
t=0

∇θ log πθ(at |st)

 (128)

= Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st)
(

T−1∑
t′=t

rt′

)]
. (129)

With this we can introduce the baseline function b

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st)
(

T−1∑
t′=t

rt′ − b(st)

)]
. (130)
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REINFORCE Algorithm with Baseline II

If γ is not one than

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st)
(

T−1∑
t′=t

rt′ − b(st)

)]
(131)

≈ Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st)
(

T−1∑
t′=t

γt
′−t rt′ − b(st)

)]
(132)

with the baseline

b(st) ≈ E[rt + γrt+1 + · · ·+ γT−1−t rT−1] . (133)

The REINFORCE Algorithm with baseline is shown in Algorithm 9. Let

θp := θp + αpγ
tδ∇θp ln(π(at | st , θp) (134)

where δ is the difference between the actual value and the predicted value at that
given state:
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REINFORCE Algorithm with Baseline III

δ = Gt − v(St , θv ) . (135)

Note that the subscripts p and v to differentiate between the policy estimation
function and the value estimation function. Thus, we assume a differentiable policy
parameterization π(a | s, θp) and a differentiable policy parameterization v(s, θv )
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REINFORCE Algorithm with Baseline IV

Algorithm 9 REINFORCE with baseline: Monte-Carlo policy gradient

1: Define step-size αp > 0, αv > 0
2: Initialize policy parameters θp , θv
3: repeat
4: for N batches do
5: Generate an episode s0, a0, r1, ..., , sT−1, aT−1, rT , following π(a | s, θp)

6: for t = 0, ...,T − 1 do
7: Gt ← from step t

8: end for
9: δ ← Gt − v(s, θv )

10: Calculate the loss L(θv ) = 1
N

∑T
t (γtGt − v(st , θv ))2

11: Calculate the loss L(θp) = − 1
N

∑T
t ln(γtδπ(at | St , θp))

12: Update policy parameters through backpropagation: θp := θp + αp∇p
θL(θp)

13: Update policy parameters through backpropagation: θv := θv + αv∇v
θL(θv )

14: end for
15: until n episodes
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Advantage Function I

Recall the definition of the action state function

Qπ(s, a) = Eτ∼πθ

[
T−1∑
t=0

rt

∣∣∣∣∣ s0 = s, a0 = a

]
(136)

and the value-state function

Vπ(s) = Eτ∼πθ

[
T−1∑
t=0

rt

∣∣∣∣∣ s0 = s

]
(137)

and the advantage function

Aπ(s, a) = Qπ(s, a)− Vπ(s) . (138)

We have [20]
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Advantage Function II

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st)
(

T−1∑
t′=t

rt′ − b(st)

)]
(139)

= Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st) ·
(
Qπ(st , at)− Vπ(st)

)]
(140)

= Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st) · Aπ(st , at)

]
(141)

≈ Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at |st) · Aπ,γ(st , at)

]
. (142)
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Q-Learning I

Deep Q network and the epsilon-greedy policy.

Q learning is a value based method of supplying information to inform which
action an agent should take.

In tabular Q-learning, for example, you are selecting the action that gives the
highest expected reward (max ′aQ(s′, a′), possibly also in an ε-greedy fashion)
which means if the values change slightly, the actions and trajectories may
change radically.

The Q learning rule

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)− Q(s, a)] (143)

0 ≤ γ ≥ 1 (144)

α (145)

with α being the learning rate.

Both α and the Q(s, a) subtraction are not required to be explicitly defined in deep Q
learning, as the neural network will take care of that during its optimized learning
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Q-Learning II

process, i.e., deep Q-learning applies the Q-learning updating rule during the training
process. A neural network is created which takes the state s as its input, and then the
network is trained to output appropriate Q(s, a) values for each action in state s.
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Actor-Critic policy gradient algorithm I

Actor-critic methods consist of two models, which may optionally share parameters:

Critic updates the value function parameters w and depending on the algorithm it
could be action-value Qw (a|s) or state-value Vw (s).

Actor updates the policy parameters θ for πθ(a|s) in the direction suggested by
the critic.

Let αθ and αw be two learning rates. predefined for policy and value function
parameter updates respectively. The actor-critic Monte-Carlo policy gradient
algorithm is shown in Algorithm 10.
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Actor-Critic policy gradient algorithm II

Algorithm 10 Actor-Critic: Monte-Carlo policy gradient

1: Initialize s, θ,w at random; sample a ∼ πθ(a|s)

2: for t (1,. . . ,T) do
3: Sample reward rt ∼ R(s, a) and next state s′ ∼ P(s′|s, a)

4: Then sample the next action a′ ∼ πθ(a′|s′)
5: Update the policy parameters: θ ← θ + αθQw (s, a)∇θ lnπθ(a|s)

6: Compute the correction (TD error) for action-value at time t:

- δt = rt + γQw (s′, a′)− Qw (s, a)

- w ← w + αw δt∇wQw (s, a)

7: Update a← a′ and a← s′

8: end for
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ε Greedy Strategy I

Let r be a uniform random number. ε-greedy strategy

random choice

best choice

r

r < ε

r ≥ ε

Figure 14: ε-greedy strategy. r is a uniform random number.
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ε Greedy Strategy II

Algorithm 11 ε-greedy strategy

1: for i (1,. . . ,samples) do
2: r ∼ uniform(0,1)
3: if r < ε then
4: choose random action
5: else
6: choose best action
7: end if
8: end for
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Value Function Fitting
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Value Function Fitting: Example

1 ’’’

3 Source:
https :// adventuresinmachinelearning.com/reinforcement -learning -

tensorflow/
5

’’’
7

import gym
9

import tensorflow as tf
11 import numpy as np

import time
13 import seaborn as sns

import matplotlib as mpl
15 import matplotlib.pyplot as plt

from scipy.stats import norm
17 import random as random

import math
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Value Function Fitting: Example

BATCH_SIZE = 100
2 MAX_EPSILON = 1.0

MIN_EPSILON = 0.0
4 LAMBDA = 0.001

GAMMA = 0.99
6

8 class Model:

10

def __init__(self , num_states , num_actions , batch_size):
12

self._num_states = num_states
14 self._num_actions = num_actions

self._batch_size = batch_size
16

# define the placeholders
18 self._states = None

self._actions = None
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Value Function Fitting: Example

# the output operations
2 self._logits = None

self._optimizer = None
4 self._var_init = None

6 # now setup the model
self._define_model ()

8

10 def _define_model(self):

12 self._states = tf.placeholder(shape =[None , self._num_states
], dtype=tf.float32)

self._q_s_a = tf.placeholder(shape=[None , self.
_num_actions], dtype=tf.float32)

14

# create a couple of fully connected hidden layers
16 fc1 = tf.layers.dense(self._states , 50, activation

=tf.nn.relu)
fc2 = tf.layers.dense(fc1 , 50, activation=tf.nn.

relu)
18 self._logits = tf.layers.dense(fc2 , self._num_actions)

20 loss = tf.losses.mean_squared_error(self._q_s_a ,
self._logits)
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Value Function Fitting: Example

self._optimizer = tf.train.AdamOptimizer ().minimize(loss)
2 self._var_init = tf.global_variables_initializer ()

4

def predict_one(self , state , sess):
6 return sess.run(self._logits , feed_dict ={self._states:

state.reshape
(1, self._num_states)})

8

10 def predict_batch(self , states , sess):
return sess.run(self._logits , feed_dict ={self._states:

states })
12

14 def train_batch(self , sess , x_batch , y_batch):
sess.run(self._optimizer , feed_dict ={self._states: x_batch ,

self._q_s_a: y_batch })
16

18 class Memory:

20 def __init__(self , max_memory):
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Value Function Fitting: Example

2 self._max_memory = max_memory
self._samples = []

4

def add_sample(self , sample):
6

self._samples.append(sample)
8 if len(self._samples) > self._max_memory:

self._samples.pop(0)
10

def sample(self , no_samples):
12

if no_samples > len(self._samples):
14 return random.sample(self._samples , len(self._samples))

else:
16 return random.sample(self._samples , no_samples)

18

class GameRunner:
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Value Function Fitting: Example

def __init__(self , sess , model , env , memory , max_eps , min_eps ,
decay , render=True):

2

self._sess = sess
4 self._env = env

self._model = model
6 self._memory = memory

self._render = render
8 self._max_eps = max_eps

self._min_eps = min_eps
10 self._decay = decay

self._eps = self._max_eps
12 self._steps = 0

self._reward_store = []
14 self._max_x_store = []

16

def run(self):
18

state = self._env.reset()
20 tot_reward = 0
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Value Function Fitting: Example

max_x = -100
2

while True:
4 if self._render:

self._env.render ()
6

action = self._choose_action(state)
8 next_state , reward , done , info = self._env.step(action)

if next_state [0] >= 0.1:
10 reward += 10

elif next_state [0] >= 0.25:
12 reward += 20

elif next_state [0] >= 0.5:
14 reward += 100

16 if next_state [0] > max_x:
max_x = next_state [0]

18

# is the game complete? If so , set the next state to
20 # None for storage sake
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Value Function Fitting: Example

if done:
2 next_state = None

4 self._memory.add_sample ((state , action , reward ,
next_state))

self._replay ()
6

# exponentially decay the eps value
8 self._steps += 1

self._eps = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) \
10 * math.exp(-LAMBDA * self.

_steps)

12 # move the agent to the next state and accumulate the
reward

state = next_state
14 tot_reward += reward

16 # if the game is done , break the loop
if done:

18 self._reward_store.append(tot_reward)
self._max_x_store.append(max_x)

20 break

101 / 121



Value Function Fitting: Example

2 print("Step {}, Total reward: {}, Eps: {}".format(self.
_steps , tot_reward , self._eps))

4

def _choose_action(self , state):
6

if random.random () < self._eps:
8 return random.randint(0, self._model._num_actions - 1)

else:
10 return np.argmax(self._model.predict_one(state , self.

_sess))

12

def _replay(self):
14

batch = self._memory.sample(self._model._batch_size)
16 states = np.array([val[0] for val in batch ])

next_states = np.array ([(np.zeros(self._model._num_states)
18 if val [3] is None else val [3]) for

val in batch])

20 # predict Q(s,a) given the batch of states
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Value Function Fitting: Example

q_s_a = self._model.predict_batch(states , self._sess)
2

# predict Q(s’,a’) - so that we can do gamma * max(Q(s’a’))
below

4 q_s_a_d = self._model.predict_batch(next_states , self._sess
)

6 # setup training arrays
x = np.zeros((len(batch), self._model._num_states))

8 y = np.zeros((len(batch), self._model._num_actions))
for i, b in enumerate(batch):

10

state , action , reward , next_state = b[0], b[1], b[2], b
[3]

12

# get the current q values for all actions in state
14 current_q = q_s_a[i]

16 # update the q value for action
if next_state is None:

18 # in this case , the game completed after action , so
there is no max Q(s’,a ’)

# prediction possible
20 current_q[action] = reward
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Value Function Fitting: Example

else:
2 current_q[action] = reward + GAMMA * np.amax(

q_s_a_d[i])
x[i] = state

4 y[i] = current_q

6 self._model.train_batch(self._sess , x, y)

8

10 if __name__ == "__main__":

12 env_name = ’MountainCar -v0’
env_name = ’Acrobot -v1’

14 env = gym.make(env_name)

16 num_states = env.env.observation_space.shape [0]
num_actions = env.env.action_space.n

18

model = Model(num_states , num_actions , BATCH_SIZE)
20 mem = Memory (50000)
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Value Function Fitting: Example

2 with tf.Session () as sess:
sess.run(model._var_init)

4 gr = GameRunner(sess , model , env , mem , MAX_EPSILON ,
MIN_EPSILON , LAMBDA)

num_episodes = 300
6 cnt = 0

while cnt < num_episodes:
8 if cnt % 10 == 0:

print(’Episode {} of {}’.format(cnt+1, num_episodes
))

10 gr.run()
cnt += 1

12

plt.plot(gr._reward_store)
14 plt.show()

plt.close("all")
16 plt.plot(gr._max_x_store)

plt.show()
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Continuous State and Action Space I

We will rely on the Stochastic Policy Gradient Theorem

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ (s, a)] . (146)

Hence, the computation of the policy gradient reduces to a simple expectation.

Policy modeling: parameterized by a function θ: πθ(a|s)

J(θ) =
∑
s∈S

dπ(s)Vπ(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (147)

where dπ(s) is the stationary distribution of Markov chain for πθ for which

dπ(s) = lim
t→∞

P(st = s|s0, πθ) (148)

and this is the probability that st = s when starting from s0 and following policy πθ
for t steps.

Problems:
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Continuous State and Action Space II

in generalized policy iteration, the policy improvement step argmaxa∈A Qπ(s, a)

requires a full scan of the action space, suffering from the curse of
dimensionality

∇θJ(θ) = ∇θ
∑

s∈S dπ(s)
∑

a∈A Qπ(s, a)πθ(a|s) (149)

∝
∑

s∈S dπ(s)
∑

a∈A Qπ(s, a)∇θπθ(a|s) (150)

103 / 121



Continuous State and Action Space III

∇θVπ(s) = φ(s) +
∑
a

πθ(a|s)
∑
s′

P(s′|s, a)∇θVπ(s′) (151)

= φ(s) +
∑
s′

∑
a

πθ(a|s)P(s′|s, a)∇θVπ(s′) (152)

= φ(s) +
∑
s′
ρπ(s → s′, 1)∇θVπ(s′) (153)

= φ(s) +
∑
s′
ρπ(s → s′, 1)∇θVπ(s′) (154)

= φ(s) +
∑
s′
ρπ(s → s′, 1)[φ(s′) +

∑
s′′

ρπ(s′ → s′′, 1)∇θVπ(s′′)] (155)

= φ(s) +
∑
s′
ρπ(s → s′, 1)φ(s′) +

∑
s′′

ρπ(s → s′′, 2)∇θVπ(s′′) (156)

= φ(s) +
∑
s′
ρπ(s → s′, 1)φ(s′) +

∑
s′′

ρπ(s → s′′, 2)φ(s′′) +
∑
s′′′

ρπ(s → s′′′, 3)∇θVπ(s′′′)(157)

= . . .; Repeatedly unrolling the part of ∇θV
π(.) (158)

=
∑
x∈S

∞∑
k=0

ρπ(s → x , k)φ(x) . (159)
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Continuous State and Action Space IV

The nice rewriting above allows us to exclude the derivative of Q-value function
∇θQπ(s, a).

∇θJ(θ) = ∇θVπ(s0) (160)

=
∑
s

∞∑
k=0

ρπ(s0 → s, k)φ(s) (161)

=
∑
s

η(s)φ(s) (162)

=
(∑

s

η(s)
)∑

s

η(s)∑
s η(s)

φ(s) (163)

∝
∑
s

η(s)∑
s η(s)

φ(s) (164)

=
∑
s

dπ(s)
∑
a

∇θπθ(a|s)Qπ(s, a) . (165)

In the episodic case, the constant of proportionality (
∑

s η(s)) is the average length of
an episode.

105 / 121



Continuous State and Action Space V

∇θJ(θ) ∝
∑

s∈S dπ(s)
∑

a∈A Qπ(s, a)∇θπθ(a|s) (166)

=
∑

s∈S dπ(s)
∑

a∈A πθ(a|s)Qπ(s, a)∇θπθ(a|s)
πθ(a|s)

(167)

= Eπ[Qπ(s, a)∇θ lnπθ(a|s)] (168)

where Eπ refrers to Es∼dπ,a∼πθ
when both state and action distributions follow the

policy πθ (on policy).

The policy gradient theorem lays the theoretical foundation for various policy gradient
algorithms. This vanilla policy gradient update has no bias but high variance. Many
following algorithms were proposed to reduce the variance while keeping the bias
unchanged.

∇θJ(θ) = Eπ[Qπ(s, a)∇θ lnπθ(a|s)] . (169)
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Genetic Algorithms I

Genetic algorithms apply the principles derived from Darwin’s principles (natural
selection):

Individuals in population compete for resources.

Fittest individuals mate to create more offsprings than others.

Fittest parent propagates genes through generation; parents may produce
offsprings better than either parent.

Generation are coupled to the environment.

The objective is to maintains the population of n individuals along with their fitness
scores. Hence, central to genetic algorithms are the notions of population and the
fitness function. Each iteration generates from an initial population a new one. There
are three operators operating on the individuals from the population:

Selection
Individuals with better fitness scores pass genes on to successive generations.

Crossover
The selection operator is applied to select two individuals, and randomly choose
crossover sites to exchange the genes at these sites.
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Genetic Algorithms II

Mutation
Insert random genes in offsprings to maintain diversity.

The operation is assumed to be applied to genes, often represented by a sequence
from an alphabet Σ:

ADEAGEF

Algorithm 12 Generic Genetic Algorithm

1: Generate the initial population
2: Compute fitness
3: repeat
4: Selection
5: Crossover
6: Mutation
7: Compute fitness
8: until population has converged

108 / 121



Genetic Algorithms III

Let us look at the survival probability of individual i wit fitness fi . One possibility is

Pi =
fi∑
i fi

. (170)

Genetic algorithms have the following advantages:

No gradients are required

Can be parallelized

Can optimize continuous as well as discrete functions

Can be applied to multi-objective problems
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Genetic Algorithm: Example

1 # Source: https ://www.geeksforgeeks.org/genetic -algorithms/
# Python3 program to create target string , starting from

3 # random string using Genetic Algorithm

5 import random

7 # Number of individuals in each generation
POPULATION_SIZE = 100

9

# Valid genes
11 GENES = ’’’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP

QRSTUVWXYZ 1234567890 , .-;:_!"#%&/() =?@${[]} ’’’
13

# Target string to be generated
15 TARGET = "I love GeeksforGeeks"

17 class Individual(object):
’’’

19 Class representing individual in population
’’’
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Genetic Algorithm: Example

def __init__(self , chromosome):
2 self.chromosome = chromosome

self.fitness = self.cal_fitness ()
4

@classmethod
6 def mutated_genes(self):

’’’
8 create random genes for mutation

’’’
10 global GENES

gene = random.choice(GENES)
12 return gene

14 @classmethod
def create_gnome(self):

16 ’’’
create chromosome or string of genes

18 ’’’
global TARGET

20 gnome_len = len(TARGET)
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Genetic Algorithm: Example

return [self.mutated_genes () for _ in range(gnome_len)]
2

def mate(self , par2):
4 ’’’

Perform mating and produce new offspring
6 ’’’

8 # chromosome for offspring
child_chromosome = []

10 for gp1 , gp2 in zip(self.chromosome , par2.chromosome):

12 # random probability
prob = random.random ()

14

# if prob is less than 0.45, insert gene
16 # from parent 1

if prob < 0.45:
18 child_chromosome.append(gp1)

20 # if prob is between 0.45 and 0.90, insert
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Genetic Algorithm: Example

# gene from parent 2
2 elif prob < 0.90:

child_chromosome.append(gp2)
4

# otherwise insert random gene(mutate),
6 # for maintaining diversity

else:
8 child_chromosome.append(self.mutated_genes ())

10 # create new Individual(offspring) using
# generated chromosome for offspring

12 return Individual(child_chromosome)

14 def cal_fitness(self):
’’’

16 Calculate fittness score , it is the number of
characters in string which differ from target

18 string.
’’’

20 global TARGET
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Genetic Algorithm: Example

fitness = 0
2 for gs, gt in zip(self.chromosome , TARGET):

if gs != gt: fitness += 1
4 return fitness

6 # Driver code
def main():

8 global POPULATION_SIZE

10 #current generation
generation = 1

12

found = False
14 population = []

16 # create initial population
for _ in range(POPULATION_SIZE):

18 gnome = Individual.create_gnome ()
population.append(Individual(gnome))
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Genetic Algorithm: Example

while not found:
2

# sort the population in increasing order of fitness score
4 population = sorted(population , key = lambda x:x.fitness)

6 # if the individual having lowest fitness score ie.
# 0 then we know that we have reached to the target

8 # and break the loop
if population [0]. fitness <= 0:

10 found = True
break

12

# Otherwise generate new offsprings for new generation
14 new_generation = []

16 # Perform Elitism , that mean 10% of fittest population
# goes to the next generation

18 s = int ((10* POPULATION_SIZE)/100)
new_generation.extend(population [:s])
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Genetic Algorithm: Example

# From 50% of fittest population , Individuals
2 # will mate to produce offspring

s = int ((90* POPULATION_SIZE)/100)
4 for _ in range(s):

parent1 = random.choice(population [:50])
6 parent2 = random.choice(population [:50])

child = parent1.mate(parent2)
8 new_generation.append(child)

10 population = new_generation

12 print("Generation: {}\ tString: {}\ tFitness: {}".\
format(generation ,

14 "".join(population [0]. chromosome),
population [0]. fitness))

16

generation += 1
18

20 print("Generation: {}\ tString: {}\ tFitness: {}".\
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Genetic Algorithm: Example

format(generation ,
2 "".join(population [0]. chromosome),

population [0]. fitness))
4

if __name__ == ’__main__ ’:
6 main()
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Excercises I

Exercise 1: Single Layer Perceptron
Consider a simple perceptron (see Figure): what will the output be when
the input is (0, 0)? What about inputs (0, 1), (1, 1) and (1, 0)? What if
we change the bias weight to -0.5?

1

Input 1

Input 2

-1.5

1.0

1.0
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Excercises II

Exercise 2: Basis Functions
Given a test vector xi , the output of a neural network is defined as

f (xi ) =
M∑
j=0

wjφj (xi , vj ) . (171)

The weights of the neurons can be learned by employing the
back-propagation rule with sample-based gradient descent. In the lecture
neural networks with sigmoid neurons have been introduced, but it is
possible to employ different basis functions:

Which properties do these basis functions have to fulfill?
Is the number of parameters for φ(xi , vj limited? Could several different
basis functions be used for the same neural network?

Exercise 3: Error Convergence
Given 2-1 network trained with one single pattern by means of
back-propagation of error and learning rate η = 0.1. Let the pattern (p, t)

be defined by p = (p1, p2) = (0.3, 0.7). Verify whether the error

E =
1
2

(t − y)2 (172)

converges and if so, at what value?
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advantage, reinforcement learning, 70

ANN , 17
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Bellman Equation, 91

classification, neural network, 32
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CpG, 48

crossover, genetic algorithm, 137
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decoding problem, 56

deep learning, 13

discount parameter, 69

environment, fully observable, 11

episode, reinforcement learning, 73

evaluation problem, 56

excitatory synapses, 19

expectation maximization (EM) algorithm, 63

fitness function, 137

forward algorithm, hidden Markov model, 57

forward-backward algorithm, hidden Markov model, 63
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gradient descent optimization algorithms, 15

Hadamard product, 24

HMM, hidden Markov model, 44

horizon, reinforcement learning, 67

inhibitory synapses, 19

learning problem, 56

learning rate, 80

learning rate schedule, 13

logistic function, 20

Markov chain, 131

Markov chain, reinforcement learning, 67

Markov Decision Process, MDP, 8

Markov reward process, MRP, 9

mini-batch gradient descent, 14

Monte Carlo policy gradient, 81
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multiple sequence alignments, 54

mutation, genetic algorithm, 138

n-gram Models, 61

natural selection, 137

Neural Networks, 17

neural networks, artificial, 17

perceptron, 18

play out, reinforcement learning, 73

policy gradient, 68

policy, reinforcement learning, 66

population, genetic algorithm, 137

Q-Learning, 112
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reinforcement learning, 65

return, reinforcement learning, 65

reward function, 9, 70

reward, reinforcement learning, 65

Schur product, 24

selection, genetic algorithm, 137

SGD, with momentum, 15

sigmoid neuron, 19

Smith-Waterman algorithm, 54

softmax, 72

state space, 9

stochastic gradient descent, 13

stochastic gradient policy theorem, 73

tensorflow, 15

value function fitting, 118
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