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Introduction



Introduction I

Figure 1: Image taken from [1]: Oscillations of MinD GFP in E. coli. (a)-(d) Fluorescence
images of MinD GFP in a cell at subsequent time points separated by 20 s. (e) Time average
of all frames during one oscillation period. Two subsequent frames are separated by 1 s. (f)
Fluorescence intensity I obtained from a line scan of the fluorescence signal in (e). The
background signal has been subtracted from the total signal which has then been rescaled with
the maximum intensity during the oscillation. The slight asymmetry is due to bleaching during
the observation period. Scale bar: 1µm. The cell length is Lc = 2.3µm.
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Introduction II
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Figure 2: Image taken from [1]: .
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Reaction-Diffusion Equation



Reaction-Diffusion Equation I

Let P(x, t) denote for example a population at time t and position x. The population
can change as follows:

the individual particles can move around

they may produce new indivuduals or kill existing individuals

other causes

We shall assume Ficks law

J(x, t) = −d(x)∇xP(x, t) (1)

where J is the flux and d(x) is the diffusion coefficient at x.

Assume the rate of change of the density function due to other causes is f (x, t,P),
the reaction rate . We use the balance law to derive a differential equation. For this
we choose a region O. Then the total population in O is

∫
O
P(x, t)dx (2)
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Reaction-Diffusion Equation II

and the rate of change of the total population is

d

dt

∫
O
P(x, t)dx . (3)

The net growth of the population inside the region O is∫
O
f (x, t,P(x, t))dx (4)

and the total out flux is

∫
∂O

J(x, t) · n(x)dS . (5)

The balance law implies

d

dt

∫
O
P(x, t)dx = −

∫
∂O

J(x, t) · n(x)dx +

∫
O
f (x, t,P(x, t))dx . (6)

Since
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Reaction-Diffusion Equation III

∫
∂O

J(x, t) · n(x)dS =

∫
O
divJ(x, t)dx (7)

it follows

∫
O

∂

∂t
P(x, t)dx =

∫
O

[div (d(x)∇xP(x, t)) + f (x, t,P(x, t))] dx . (8)

Since O is arbitrary we have

∂

∂t
P(x, t) = [div (d(x)∇xP(x, t)) + f (x, t,P(x, t))] (9)

with the diffusion term and the reaction term. If we assume that the diffusion is not
space dependent d(x) = D we find

∂

∂t
P(x, t) = D∆P(x, t) + f (x, t,P(x, t)) (10)

the reaction diffusion equation.

If we disregard the diffusion term we obtain
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Reaction-Diffusion Equation IV

∂P

∂t
= f (t,P) (11)

where P = P(t). Hence we recover the typical population models if we assume

f (P) = kP Malthus linear growth

f (P) = kP(1− P/N) logistic growth.

Taking spatial inhomogenities into account we get for the Malthus case

∂P

∂t
= D∆P(x, t) + kP (12)

and

∂P

∂t
= D∆P(x, t) + kP(1− P/N) (13)

for the logistic growth that describe a spatially distributed population which satisfies
general growth pattern.

We rewrite the above two equations as
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Reaction-Diffusion Equation V

∂P

∂t
= D∆P(x, t) + Pg(P) . (14)

What is left is to specify the boundary conditions. Suppose we have a closed system.
For each individual involved, if J(x, t) is the flux of the individual, then the flux across
a boundary point x is J(x, t) · n(x). If we assume Ficks law, then for a closed system,
at each boundary point x

∇u(x, t) · n(x) = 0 (15)

where u(x, t) is the concentration. Therefore a well-posed closed reaction diffusion
equation is a initial value boundary problem

∂
∂t

u = D∆u + f (x, t, u) t > 0, x ∈ Ω

u(x, 0) = u0(x) x ∈ Ω

∇u(x, t) · n(x) = 0 t > 0, x ∈ ∂Ω

i.e. with von Neumann boundary condition.

In general there are three commonly used boundary conditions
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Reaction-Diffusion Equation VI

∇u(x, t) · n(x) = φ(x) t > 0, x ∈ ∂Ω von Neumann

∇u(x, t) · n(x) + a(x)u(x, t) = φ(x) t > 0, x ∈ ∂Ω Robin

u(x, t) = φ(x) t > 0, x ∈ ∂Ω Dirichlet

with a(x) ≥ 0. A further boundary condition is the periodic.

There are two phenomena that one often observes solving reaction-diffusion equations

Wave propagation: On an unbounded habitat the population will move from an
occupied area to an unoccupied area with a constant velocity.

Critical patch size: On a bounded area with u = 0, the persistence of a
population depends on the size of the habitat.

We now want to investigate the case with a no-flux boundary condition

∂
∂t

u = D( ∂
2u
∂x2 + ∂2u

∂y2 ) + λu t > 0, (x , y) ∈ R = (0, a)× (0, b)

∇u · n = 0 (x , y) ∈ ∂R
u(x , y , 0) = u0(x , y) (x , y) ∈ R

D, λ, a, b > 0

10 / 63



Reaction-Diffusion Equation VII

We assume that we can separate variables

u(x , y , t) = U(t)V (x , y) . (16)

Then

U′(t) = (Dk + λ)U(t) (17)

and

∂2V

∂x2 +
∂2V

∂y2 = kV t > 0, (x , y) ∈ R (18)

∇V · n = 0 (x , y) ∈ ∂R . (19)

Assume further

V (x , y) = W (x)Z(y) (20)
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Reaction-Diffusion Equation VIII

then

W ′′(x)

W (x)
+

Z ′′(x)

Z(x)
= k (21)

and hence

W ′′(x)

W (x)
= const and

Z ′′(x)

Z(x)
= const . (22)

The von Neumann boundary condition implies

W ′(0) = W ′(a) = 0 (23)

Z ′(0) = Z ′(b) = 0 (24)

and thus
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Reaction-Diffusion Equation IX

W ′′(x) = k1W (x), x ∈ (0, a),W ′(0) = W ′(a) = 0 (25)

Z ′′(y) = k2Z(y), y ∈ (0, b),Z ′(0) = Z ′(b) = 0 (26)

k = k1 + k2 . (27)

The problems stated in eq are eigenvalue problems in one dimension. The eigenvalues
and eigenfunctions are

k1n = −
n2π2

a2 , Wn(x) = cos
(nπx

a

)
, n ∈ N (28)

k2n = −
m2π2

b2 , Zm(y) = cos
(mπy

b

)
, m ∈ N (29)

from which we get
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Reaction-Diffusion Equation X

kn,m = −
n2π2

a2 −
m2π2

b2 (30)

Vn,m = cos
(nπx

a

)
cos
(mπy

b

)
, n,m ∈ N . (31)

Put it all together we have

u(x , y , t) =
m=0∑
n=0

cn,me
(Dkn,m+λ)t cos

(nπx
a

)
cos
(mπy

b

)
(32)

and the cn,m are determined by the initial condition.
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Reaction



Reaction I

Some general literature on population dynamics

Modeling Differential Equations in Biology [2]

Mathematical Biology, Vol. 1: An Introduction [3]

Mathematical Biology, Vol. 2: Spatial Models and Biomedical Applications [4]

Essential Mathematical Biology [5]

Mathematics in Population Biology [6]

Mathematical Models in Biology [7]
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Iterative Models I

Let P denote a population and we shall assume spatial homogeniety. The evolution of
the popululation can be described by a general differential equation assume some
function g

dP

dt
= Pg(p) (33)

Eq 33 can also be interpreted in terms of a discrete equation (first considered by
Robert May)

Pn+1 = Png(Pn) . (34)

If g(Pn) = k(1− Pn/N) then the equation yields the logistic map where k is the
control parameter

Pn+1 = kPn(1− Pn/N) . (35)

Dividing both sides by N and matching the substitution xn = Pn/N we arrive at
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Iterative Models II

xn+1 = kxn(1− xn) (36)

with xn ∈ [0, 1] and k > 0 which is a non-linear difference equation. We consider this
as a function of the control parameter k

xn+1 = kxn(1− xn) = f (k, xn) . (37)

This equation is also known as the logistic growth equation.
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Iterative Models III
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Figure 3: Result of the discrete form of the logistic map (37). The parameters for the left
panel were: x0 = 0.00001, k=1.15 and n = 150 and for the right panel k was chosen to be
equal to 3.
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Iterative Models IV
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Figure 4: Result of the discrete form of the logistic map (37). The parameters for the left
panel were: x0 = 0.00001 (blue) and x1 = 0.000011 (red), k=3.8 and n = 150.
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Logistic Map

1
import numpy as np

3
def logisticMap(n,k,x0):

5 x = np.zeros((n+1,2))
x[0,0] = 0

7 x[0,1] = x0
for i in range(n):

9 x[i+1,0] = x[i,0] + 1
x[i+1,1] = k*x[i,1]*(1 -x[i,1])

11
return x

13
n = 150

15 k = 1.15
x0 = 0.00001

17
x = logisticMap(n,k,x0)

Code 1: Logistic growth
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Iterative Models I

The question immediately arising is whether there exists a fixed point

x∗ = f (k, x∗) . (38)

Assume that we have a small pertubation of x∗

η = xn − x∗ (39)

then

x∗ + ηn+1 = f (k, x∗ + ηn) (40)

= f (k, x∗) + f ′(k, x∗)ηn + O(η2
n ) . (41)

Linearization near x∗ leads to

ηn+1 = f ′(k, x∗)ηn . (42)

Define λ = f ′(k, x∗). If
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Iterative Models II

|λ| = |f ′(k, x∗)| < 1 (43)

then (ηn)→ 0 as n→∞. The sequence (xn) converges to x∗ and x∗ is linearly
stable.

Consider the Diagram 6. The derivative of f (k, x) at the intersection point (being
equal to x∗ = (k − 1)/k with y = x is

f ′(k, x∗) = 2− k . (44)

To ensure that |f ′| < 1 we need k > 1. On the other hand we should not leave the
interval [0, 1] so that

1 < k ≤ 4 (45)

Clearly if 1 < k < 3 then |f ′(k, x∗)| < 1 and every initial value leads the stable
equilibrium value

x∗ =
k − 1
k

. (46)
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Iterative Models III

If we choose k = k0 = 3 then we have a marginally stable equilibrium point. Choose

x1 = x∗ + δ . (47)

Linearization of f (k, x1) yields

x2 = x∗ − δ . (48)

and vice versa. Hence we get an oscillation and the period has doubled. The point

k0 = 3 and x∗0 = x∗(k0) (49)

is a branching point. If k is slightly above k0 then x∗ = (k − 1)/k becomes unstable
and a period doubling sets in, i.e., the fixed point does not satisfy x∗ = f (k, x∗) but

x∗ = f (k, f (k, x∗)) (50)

hence we have a bifurcation. So now we need to study the map f ◦ f
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Iterative Models IV

xn+1 = k2xn(1− xn)[1− kxn(1− xn)] (51)

and look for the fix points. and have two of them in the range

3 ≤ k ≤ 1 +
√
6 ≈ 3.449 . (52)

Then we obtain two mariginaly stable fixpoints and corresponding branching with a
period doubling. This period doubling cascade continues until we reach a limit point

k∞ = 3.56994... (53)

Figure 5 shows the bifurcation diagram for the logistic equation. If we consider

lim
n→∞

=
ki − ki−1

ki+1 − ki
= δ (54)

then this value is universal under certain conditions on the smoothness of the maps
with a value of
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Iterative Models V

δ = 4.669201609 (55)

the Feigenbaum constant. Beyond approximately 3.57 we find the onset of chaos.

Figure 5 shows the bifurcation diagram for the logistic equation.
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Iterative Models VI
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Figure 5: Bifurcation diagram for the logistic map. The figure was generated using the octave
program from the wikipedia shown in the text.
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Iterative Models VII
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Figure 6: Cobweb for the logistic map for the case k = 2.83, 3.83 (left, right image) and an
initial value of x(0) = 0.2.
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Iterative Models VIII
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Figure 7: Two trajectories for the logistic map. The trajectories where obtained using k = 3.7
and two initial values that are very close together: 0.99 and 0.9901. The two trajectories,
although having close initial value start to deviate quickly.

28 / 63



Finite State Cellular Automata



Finite State Cellular Automaton Models I

Cellular Automata have many applications beside the reaction-diffusion systems which
we will study here, e.g. fluid dynamics, growth, reproduction, competition and
evolution etc.

Consider first a one dimensional lattice Λ. In general we will be looking at lattice like
Zd , (Z mod L)d , etc.

Figure 8: Hexagonal lattice
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Finite State Cellular Automaton Models II

Each site i (i = 1, ...,N) can be in k states. At each time step t every cell changes
state (synchronous updating) depending on its present state and on the states of its
neighbours

si (t + 1) = f (si−r , si−r−1, ..., si , si+1, si+r ) (56)

where r is called the radius of the neighbourhood. Thus we have

p = k2r+1 (57)

possible permutations and kp possible rules to generate the next step.

As for the models and methods we have discussed in the first lectures we have to
specifiy the boundary conditions, e.g.

free

periodic

Thus cellular automata are specified by

space
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Finite State Cellular Automaton Models III

states

neighbourhood

rules

Let us look at an example. We fix the number of states to two {0, 1} and choose the
rule to only look at the nearest neighbours and ignore the own state (see Figure 9)

x ix i-1 x i+1

Figure 9: Two states: 0,1. Rule: only look at the nearest neighbours and ignore the own state

Table 1: Exclusive OR (XOR)

i − 1 i + 1 i
0 0 0
0 1 1
1 0 1
1 1 0
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Finite State Cellular Automaton Models IV

hence we only look at the nearest neighbours and ignore the state of the automaton
that is going to be updated. Figure 10 shows the result for this cellular automaton
with the initial condition setting all cells to 0 except the center cell which is set to 1.
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Finite State Cellular Automaton Models V

Figure 10: Visualization of the time evolution (y-axis) of the exclusive or (XOR) cellular
automaton. In particular, the figure shows the result for the XOR CA for 100 time steps.
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Finite State Cellular Automaton Models VI

Another example is the

Rule 30 (000111102 = 30) . (58)

Figure 11: Image taken from Wikipedia: Richard Ling <wikipedia@rling.com> - Own work;
Location: Cod Hole, Great Barrier Reef, Australia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=293495
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Finite State Cellular Automaton Models VII

Assume m out of 2r + 1 distinct neighbourhoods map to non-zero states. To classify
the outcome of the time evolution (see Exercise 6), ie. the long term behaviour of the
dynamical system we define

λ :=
m

k2r+1 . (59)

We want to classify the automaton into trivial (uniform), chaotic, stable periodic,
aperiodic, localized complex, ... etc.

Class 1 small λ

Class 2 λ ≈ 0.5.

Recall that chaotic is meant to imply

sensitivity to the initial conditions,

topological mixing and

dense periodic orbits.
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Finite State Cellular Automaton Models VIII

We will denote the transition rule by G for general lattices or graphs

G = [g(x)] x ∈ Λ (60)

and the overall state

S = [s(x , t)] . (61)

Note that one can also define time-dependent rules. One example is to alternate
between two rules.

Cellular automata with fixed rules are called deterministic automata. Cellular
automata are called probabilistic if from a given set of rules, each rule is applied with
a probability.

Thus for example for d = 2 we have

G : s(t)→ s(t + 1)

gxy = gij : sij (t)→ sij (t + 1) .
(62)
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Finite State Cellular Automaton Models IX

We further define two typical neigbourhoods: the von Neumann and the Moore
neighbourhood, i.e. the nearest and the next-nearest neighbours of a given cell (see
Figure 12)

|x − x0|+ |y − y0| ≤ r von Neumann (63)

|x − x0| ≤ r and |y − y0| ≤ r Moore . (64)

We denote the neighbourhood by N (r).
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Finite State Cellular Automaton Models X

A

B

Figure 12: von Neumann (A) and the Moore (B) neighbourhood.
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Finite State Cellular Automaton Models XI

Recall that we defined the transition

si (t + 1) = f (si−r , si−r−1, ..., si , si+1, si+r )

where f is the rule for the transition. Suppose we change the rule according to to
some probability from f to some other function g . Depending on the number of states
a single automaton can have and depending on the neighbourhood we have a number
of possible rules. Let R be the set of possible rules and RN (∇) a finite the subset of R
(|RN (∇)| = n).

We define a probabilistic cellular automata (PCA) (stochastic cellular automata) as
a discrete-time dynamical system with synchronous update of the states where the
updating rule is chosen according to a probability distribution.

G(sN (r)) :=


z1 with probabilityW (sN (r) → z1)

z2 with probabilityW (sN (r) → z2)

...

zn with probabilityW (sN (r) → zn)

(65)

Here z i ∈
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Finite State Cellular Automata

The basic algorithm for the time development of the cellular automaton is

Algorithm 1 Basic Algorithm: Cellular Automaton

1: initialize every cell of the cellular automaton
2: for n_cycles do
3: store the state of every cell
4: for every cell si do
5: apply rule to si
6: end for
7: end for

This algorithm can be implemented in an object oriented approach by defining a class
for the cell and for the automaton. The cell class implements all the book keeping of
the state.
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Finite State Cellular Automaton Models

2 class Cell:
def __init__(self):

4 self.prev_state = 0
self.state = 0

6
def get_state(self):

8 return self.state

10 def set_state(self , state):
self.state = state

12
def get_prev_state(self):

14 return self.prev_state

16 def set_prev_state(self , state):
self.prev_state = state

18
def copy_state(self):

20 self.prev_state = self.state

Code 2: Cellular automaton: Basic cell class

The automaton class implements the topology (here a simple 1− D lattice), the
initialization and the generation of the next step with the implementation of the rule
that govern the update of the cell.
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Finite State Cellular Automaton Models

1 class Automata:
def __init__(self , numcols):

3 self.cols = numcols
self.cells = []

5 for i in range(numcols):
cell = Cell()

7 self.cells.append(cell)
def get_all_cells(self):

9 return self.cells
def next_generation(self):

11 for i in range(self.cols):
self.cells[i]. copy_state ()

13 for i in range(self.cols):
curr_cell = self.cells[i]

15 Automata.apply_rule(self ,i)
def apply_rule(self ,i):

17 state = self.cells[i]. get_prev_state ()
left = i-1

19 if (left < 0):
left = self.cols -1

21 right = i+1
if (right == self.cols):

23 right = 0
if (self.cells[left]. get_prev_state () <> self.cells[right].

get_prev_state ()):
25 self.cells[i]. set_state (1)

else:
27 self.cells[i]. set_state (0)

def init_automata(self):
29 center = int(self.cols / 2)

self.cells[center ]. set_state (1)

Code 3: Cellular automaton: Basic automaton class
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Finite State Cellular Automaton Models I

One subclass of cellular automata consists of the rules where the new state depends
only on the sum of states of the neighbours, this class of totalistic automata:

sij (t) = G

 r∑
α=−r

r∑
β=−r

aαβsi+α,j+β(t)

 i , j = 1, ..., L (66)

where aα,β are some coefficients.
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Time Dependent Diffusion Equation in d=1 (Heat Equation) I

Consider the equation

∂P

∂t
= k

∂2

∂x2 P (67)

with the discretization of the form

Pn+1
i − Pn

i = k
∆t

(∆x)2
(Pn

i+1 − 2Pn
i + Pn

i−1) . (68)

The evolution of this cellular automaton under the constraint k∆t/(∆)2 = 0.01 is
shown in Figure 13 (thus not finite state).
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Time Dependent Diffusion Equation in d=1 (Heat Equation) II

�� ��� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��
���
���
���
���
���
���
���
���
���
����

��
����
����
����
����
����
����
����
����
����
��

����������������������������������������

��
����
����
����
����
����
����
����
����
����
��

Figure 13: Evolution of the d=1 heat equation cellular automaton with the parameter
k∆t/(∆)2 = 0.01 and initial condition 1 at the center of the one-dimensional lattice.
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Reaction-Diffusion Cellular Automata I

Consider the equation

∂P

∂t
= D(

∂2

∂x2 +
∂2

∂y2 )P + f (P) (69)

where we think of P as a state variable. D is a constant. A possible discretization and
conversion into a cellular automaton is

Pn+1
ij − Pn

ij

∆t
= D

(
Pn
i+1,j − 2Pn

ij + Pn
i−1,j

(∆x)2
+

Pn
i,j+1 − 2Pn

ij + Pn
i,j−1

(∆y)2

)
+ f (Pn

ij ) (70)

Choose ∆t = ∆x = ∆y = 1, then

Pn+1
ij = D

(
Pn
i+1,j + Pn

i−1,j − Pn
i,j+1 + Pn

i,j−1

)
+ (1− 4D)Pn

ij + f (Pn
ij ) (71)

This can be rewritten as

Pn+1
ij =

r∑
k,l=−r

aklP
n
i+k,j+l + f (Pn

ij ) (72)
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Cellular Automata Examples: Fisher Diffusion Logistic Equation I

In the spirit of the one-dimensional heat equation, the Fisher diffusion logistic
equation reads

∂P

∂t
= k

∂2

∂x2 P + αP(1− P) mod M (73)

An example of a solution for the s = {0, ...,M} state model with the parameters (see
notation of example) k∆t/(∆)2 = 1 and α = 100 is shown in Figure 14.
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Cellular Automata Examples: Fisher Diffusion Logistic Equation II
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Figure 14: Evolution of the d=1 Fisher diffusion logistic equation cellular automaton with the
parameter k∆t/(∆)2 = 0.01 and initial condition 1 at the center of the one-dimensional
lattice.
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Cellular Automata Examples: Noisy Burgers Cellular Automaton I

The Noisy Burgers cellular automaton is defined as

∂P

∂t
= 2P

∂P

∂x
+

∂2

∂x2 P +∇η (74)

where η is a noise with

< η(x , t) > = 0
< η(x , t)η(x ′, t′) > = 2Dδ(x − x ′)δ(t − t′) .

(75)
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Cellular Automata Examples: Game of Life I

Assume a two-dimensional lattice with periodic boundary conditions. The Game of
Life is composed of cellular automatons each of which is either ’on/alive’ or ’off/dead’.
The state of each automaton at time t is determined by its own state and the states
of its eight immediate neighbours at t − 1 according to the following simple rules:

Any ’on’ cell (at time t-1) with fewer than two ’on’ neighbours (at t -1)
transitions to an ’off’ state at time t.

Any ’on’ cell (t -1) with two or three ’on’ neighbours (t -1) remains ’on’ at time t.

Any ’on’ cell (t -1) with more than three ’on’ neighbours (t -1) transitions to an
’off’ state at time t

And ’off’ cell (t -1) with exactly three ’on’ neighbours (t -1) transitions to an ’on’
state at time t.
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Cellular Automata Examples: Game of Life

2 class Game(object):

4 def __init__(self , state , infinite_board = True):

6 self.state = state
self.width = state.width

8 self.height = state.height
self.infinite_board = infinite_board

10
def step(self , count = 1):

12
for generation in range(count):

14
new_board = [[ False] * self.width for row in range(self.height)]

16
for y, row in enumerate(self.state.board):

18 for x, cell in enumerate(row):
neighbours = self.neighbours(x, y)

20 previous_state = self.state.board[y][x]
should_live = neighbours == 3 or (neighbours == 2 and

previous_state == True)
22 new_board[y][x] = should_live

24 self.state.board = new_board
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Cellular Automata

def neighbours(self , x, y):
2

count = 0
4

for hor in [-1, 0, 1]:
6 for ver in [-1, 0, 1]:

if not hor == ver == 0 and (self.infinite_board == True or (0
<= x + hor < self.width and 0 <= y + ver < self.height)):

8 count += self.state.board [(y + ver) % self.height ][(x + hor
) % self.width]

10 return count

12 def display(self):
return self.state.display ()

52 / 63



Cellular Automata

class State(object):
2

def __init__(self , positions , x, y, width , height):
4 active_cells = []

for y, row in enumerate(positions.splitlines ()):
6 for x, cell in enumerate(row.strip()):

if cell == ’o’:
8 active_cells.append ((x,y))

10 board = [[ False] * width for row in range(height)]

12 for cell in active_cells:
board[cell [1] + y][cell [0] + x] = True

14
self.board = board

16 self.width = width
self.height = height

18
def display(self):

20
output = ’’

22
for y, row in enumerate(self.board):

24 for x, cell in enumerate(row):
if self.board[y][x]:

26 output += ’ o’
else:

28 output += ’ .’
output += ’\n’

30
return output

32
glider = """ oo.

34 o.o
o.. """

36
my_game = Game(State(glider , x = 2, y = 3, width = 10, height = 10))

38 print my_game.display ()
my_game.step (500)

40 print my_game.display ()
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Cellular Automata

glider = """ oo.
2 o.o

o.. """
4

my_game = Game(State(glider , x = 2, y = 3, width = 10, height = 10))
6 print my_game.display ()

my_game.step (500)
8 print my_game.display ()
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Excercises



Excercises I

Exercise 1: Generalized Logistic Map
The logistic map (Equation 37) can be generalized as follows

xn+1 = kx2
n (1− xn) . (76)

Here we have assumed that the growth rate in the low-density limit is
proportional to x2. What are the r values that yield non-zero population?

Exercise 2: Henon Map[8]
Henon proposed the following map.

(x , y)→ (1 + y − ax2, bx) . (77)

Start with the following parameter values: a = 1.4, b = 0.3. Plot the
sequence (xn, xn+1) for different parameters.

Exercise 3: Chaotic maps
Study the following chaotic maps. Plot the sequence (xn, xn+1) for
different parameters.

xn+1 = xne
1−xn , (78)

xn+1 = r
xn

(1 + xn)8
. (79)
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Excercises II

Exercise 4: Quadratic form
Consider the equation

zn+1 = z2
n + c z, cn ∈ C . (80)

Analyze this map in terms of the Mandelbrot Set. For this consider the
set of complex values for which the trajectory of 0 remains bounded.
Consider specifically the boundary.

Exercise 5: Julia Set
Consider the equation

zn+1 = z2
n + c z, cn ∈ C . (81)

at fixed c. The Julia set is composed of the starting values z0 for which
the trajectory remains bounded, i.e. |zn| < κ(c) for any given n.

Exercise 6: Wolfram Classification
Wolfram [9, 10] classified for d = 1 the cellular automata into the
following classes (see Figure 15 for two examples):

From almost all initial states the automaton transitions into a homogeneous
state.
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Excercises III

From almost all initial states the automaton transitions into periodic
structures.
From almost all initial states the automaton transitions into aperiodic
structures.
Complex spatial structures occur

Search for at least one example for the above cases.

A B

Figure 15: Two examples of the evolution of the d=1 cellular automaton: A with
the rule x(i) AND (x(i − 1) XOR x(i + 1)). The initial random state turns into a
fixed structure already after one step. B with the rule (x(i − 1) OR x(i + 1)) from
a random state.
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Excercises IV
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