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Introduction



Introduction I

In essence, many of the phenomena associated with growth, aggregation and
deposition can be thought of in terms of particles diffusion problems [1, 2]. A particle
diffuses through a medium until it gets in contact with either another particle of a
cluster of particles. Depending on the model, the particles stick or are reflected a
number of times. This simple model, in its variations, is able to reproduce many of the
structures one observes.

Beside the control of the growth though diffusion, the process can also be controlled
by a reaction limit:

diffusion limited growth

reaction limited growth

For both of the above cases there can be

particle aggregation

cluster aggregation.
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Introduction II

Of course, there can be mixed forms as well.

Assume an object with N elements at positions ri with unit mass. We define the
radius of gyration of the object by

R2
g =

1
2N2

∑
i,j=1..N

(ri − rj )
2 . (1)

For later purposes we note that an alternative to this approach is to define this radius
via the principle moments of the gyration tensor S

Smn =
1
N

N∑
i=1

r
(m)
i r

(n)
i (2)

where we assume

N∑
i=1

ri = 0 (3)

R2
g = λ2

1 + ...+ λ2
d . (4)
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Introduction III

Another possibility is to define the extend of the object by the smallest box that is
needed such that object fits into the box

Rb = max
i,j=1,...,N

|ri − rj | . (5)

We further define the asphericity

b = λ2
d −

1
d − 1

(λ2
1 + ...+ λ2

d−1) =
d

d − 1
λ2
d −

R2
g

2
. (6)

Let R be the radius of the cluster (Rg ,Rb) and M be the mass (here the number of
occupied lattice sites N) that belongs to cluster, then

M = N ∝ Rdf (7)

describes the relationship between the radius and the mass where we anticipate that
the object may not be compact but be fractal with the fractal dimension df < d (see
later lectures).
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Introduction IV

Let ns be the number of sites at the surface and hi (t) the distance from a reference
distance measuring the height of the surface at time t. Then average height is given
by

〈h(t)〉 =
1
ns

∑
i

hi (t) . (8)

From this we derive surface roughness w

w2(t) =
1
ns

∑
i

(hi (t)− 〈h(t)〉)2 . (9)

as a function of time t.
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Introduction V

R
min

R
max

interface roughness

Figure 1: Illustration of interface roughness and parameters.
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Stochastic Particle based Growth
Models



Particle Systems I

We shall start with a lattice like Λ = Ld or Λ = Zn × Zm, where n and m are integers,
or a graph Λ = G . We will call a system a particle systems if

each site s ∈ Λ is in one of a finite number q of states, and

each site can change its state depending on the number of neighbouring sites.

The time evolution of the particle system is described by a discrete time Markov
chain. Let s(t) be the state of the site s at time t. Then the particle system changes
its state Λ(t)→ Λ(t + 1) by the rate q(s, s′), where s′ denotes one of the possible
finite state that s can be in.

Updating rules

synchronous: synchronous updating of a discrete time process which updates all
of the sites simultaneously

asynchronous: a site is chosen at random
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Growth Models: Eden Cluster I

Eden[3] introduced a stochastic growth model which may be used to study the
proliferation of bacteria in a culture medium, propagation of epidemics, chemical
reactions, tumor growth etc. In the simplest variant of the model every site on the
periphery of the object has an equal probability of being selected as the next growth
site.

For simplicity, we assume that the growth takes place on a lattice Λ = Ld . Once a
lattice site s is initially chosen to be the seed, then the nearest neighbour sites are the
possible growth sites. Each of the perimeter sites is visited and given the chance to
change its state to being occupied. Once a site is occupied, the nearest neighbour
sites that are not already part of the cluster are added to the list of perimeter sites.
This procedure is iterated.
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Growth Models: Eden Cluster II

Figure 2: Steps in the Eden cluster growth. The left panel shows and initial occupied (red)
site. A site of the perimeter (black) is chosen during the next step and given the chance to
change to being occupied. The right panel shows the situation after the perimeter site has
changed its state and additional perimeter sites have been added.
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Growth Models: Eden Cluster III

Algorithm 1 Basic Algorithm: Growth

1: choose initial site s

2: add first site to perimeter_list

3: for n_cycles do
4: len = length of perimenter_list

5: for len do
6: i iid from {0, .., len − 1}
7: s = select at random one of the nearest neighbours of perimeter_list(i)

8: if s not in perimeter_list and not in new_sites_list then
9: add s to new_sites_list

10: end if
11: end for
12: add new_sites_list to perimeter_list

13: end for
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Growth Models: Eden Cluster

1 import random
mcs_max = 100

3 random.seed (4711)

5 s = (0,0)
perimeter_list = []

7 new_sites_list = []
perimeter_list.append(s)

9
for mcs in range(mcs_max):

11 for n in range(len(perimeter_list)):
i = random.randrange (0,len(perimeter_list), 1)

13 s = perimeter_list[i]
d = random.randrange (0,4,1)

15 if d == 0:
sn = (s[0],s[1] -1)

17 elif d == 1:
sn = (s[0],s[1]+1)

19 elif d == 2:
sn = (s[0]-1,s[1])

21 elif d == 3:
sn = (s[0]+1,s[1])

23 elif d == 4:
print "should not happen"

25 if sn not in perimeter_list:
new_sites_list.append(sn)

27 perimeter_list.extend(new_sites_list)
new_sites_list = []

Code 1: eden.py

Figure 3: Example of a cluster generated by the Eden algorithm. Notice the compact structure
of the cluster, i.e. almost no interior un-occupied sites.

The Eden cluster is anisotropic due to the underlying lattice, i.e. its shape tends
to lengthen along the directions of the lattice axes.
Initially unoccupied sites in the interior eventually get filled in.
There is no scale invariance.
The cluster is self-affine.
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Voter Model I

Let Λ = Ld be a lattice. Let f be a function (usually increasing). For each site s of
the lattice, a set of neigbours (nearest, next-nearest, etc.) is chosen. Start with a seed
which is set to be occupied. Choose at random a site of the lattice. Let count(s) be
the number of occupied neighbour sites of s. The site s changes its state to occuied
with probability f (count(s)).

A variation on this that an occupied site becomes occupied at a rate
delta/(1 + count(s)). A unoccupied site becomes occupied at a rate equal to
1/(1 + count(s))
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Leath Cluster Model

Algorithm 2 Basic Algorithm: Leath

1: choose initial site s

2: add s to visited list
3: add neighbours of s to perimeter_list

4: while perimeter_list not empty and max_sites not reached do
5: select site s and delete from perimenter_list

6: add s to visited sites
7: if p < random number then
8: add s to sites_list

9: add neighbours of s to perimeter_list

10: end if
11: end while

14 / 40



Leath Cluster Model I

Implementation using a stack:

Here the perimeter_list is a stack where the pop operation deletes the element from
the stack. Since the push (append) put the next perimeter site right at the top of the
stack, the growth may proceed ’in preferred direction’ as the example in Figure 4
shows. the growth here terminated due to the criterion of ’maximum number of sites
reached condition. While in principle the implementation is correct if beside the
natural termination criterion no other is used, in practice the implementation is not
correct. A deque implementation corrects the situation.
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Leath Cluster Model

def addSiteToList(s,sites_list):
2 sites_list.append(s)

return sites_list
4

def addNeigboursToList(s,perimeter_list ,sites_visited_list):
6 sn = (s[0],s[1] -1)

if (sn not in perimeter_list and sn not in sites_visited_list):
8 perimeter_list.append(sn)

sn = (s[0],s[1]+1)
10 if (sn not in perimeter_list and sn not in sites_visited_list):

perimeter_list.append(sn)
12 sn = (s[0]-1,s[1])

if (sn not in perimeter_list and sn not in sites_visited_list):
14 perimeter_list.append(sn)

sn = (s[0]+1 ,s[1])
16 if (sn not in perimeter_list and sn not in sites_visited_list):

perimeter_list.append(sn)
18 return perimeter_list

Code 2: Leath cluster growth algorithm part 1: functions
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Leath Cluster Model

1 maxSites = 100000
random.seed (4711)

3
# Initialize

5 p = 0.5
s = (0,0)

7 perimeter_list = []
sites_list = []

9 sites_visited_list = []
addSiteToList(s,sites_list)

11 addSiteToList(s,sites_visited_list)
addNeigboursToList(s,perimeter_list ,sites_list)

13
# Main loop

15 while (len(perimeter_list) > 0 and len(sites_list) < maxSites):

17 s = perimeter_list.pop()
addSiteToList(s,sites_visited_list)

19 if (random.random () < p):
addSiteToList(s,sites_list)

21 addNeigboursToList(s,perimeter_list ,sites_list)

Code 3: Leath cluster growth algorithm part 2

17 / 40



Leath Cluster Model

Figure 4: Example using the stack algorithm.
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Leath Cluster Model

Figure 5: Leath cluster at p = 0.55 which is well below the percolation threshold of 0.592746.
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Diffusion Limited Aggregation Model

Witten and Sanders [4] proposed a model that also applies to growth of bacterial
colonies.

b

a

Figure 6: Setup procedure for the injection of a random walker for the diffusion limited
aggregation (DLA). The right hand side figure shows an example of a DLA-cluster
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Diffusion Limited Aggregation Model

Algorithm 3 Basic Algorithm: DLA

1: choose initial site s

2: choose a radius R1 around s

3: choose a radius R2 around s such that R1 < R2

4: start a random walker at a random position on the circle with radius R1

5: while max_sites not reached do
6: while position of random walker within R2 do
7: advance the random walker one step
8: if random walker is nearest neighbour of an occupied site then
9: add site to list of occupied sites

10: start a new random walker at a random position on the circle with radius R1

11: else if site is outside of R2 then
12: start a new random walker at a random position on the circle with radius R1

13: end if
14: compute distance d of the nearest occupied site to R1

15: if d < dc then
16: increase R1 and R2

17: end if
18: end while
19: end while
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Diffusion Limited Aggregation Model

1 while (sites < max_sites):
w = start_rw_on_circle(r1 ,midx ,midy)

3 while (check_inside_disk(w,r2,midx ,midy)):
w = advance_random_walk(w)

5 if ( nearest_neighour_of_occupied_site(w,grid) ):
grid[w[0]][w[1]] = 1

7 sites += 1
cm = center_of_mass(grid ,cols ,rows)

9 r1 = cluster_radius(cm) + d
r2 = r1 + dx

11 w = start_rw_on_circle(r1 ,midx ,midy)

Code 4: Diffusion-Limited Aggregation
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Diffusion Limited Aggregation Model

Figure 7: DLA-cluster with 10000 occupied sites.
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Diffusion Limited Aggregation Model I

C(r , r ′) =< n(r)n(r + r ′) >∝ rd−df (10)

Fractal dimension for d = 2 df = 1.66.
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Deposition

Figure 8
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Particle-Continuous Mixture Models



Particle-Continuous Mixture Models I

As an example, we study the thrombus formation using a mixture model coupling the
discrete Potts model of platelet and blood cell aggregation to continuous PDEs
describing the hydrodynamics of blood flow and the kinetics of coagulation
reactions [6]. The basic ideas are demonstrated in Figures 9 and 10. The model
consists of a list of biological cells, a list of generalized cells, a set of chemical
diffusants and a description of their biological and physical behaviours and interactions
embodied in the effective energy, with auxiliary equations to describe absorption and
secretion of diffusants and extracellular materials, state changes within the cell,
mitosis, cell death and the behaviour of extracellular diffusants.

Platelets
Platelets can exist in three states: a quiescent (resting) state; an initial activated
state; and a final activated state. The concentration of resting platelets is
assumed to be constant. The platelets in the two latter states generate molecules
to promote coagulation and activation of the neighbouring resting platelets.

Coagulation factors
Coagulation occurs on the surface of individual activated platelets in blood.
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Particle-Continuous Mixture Models II

Fibrin
Thrombin is considered as the final product of the coagulation system, which
converts fibrinogen in the blood into fibrin.

Blood cells
A significant percentage of the volume of blood contains erythrocytes that are
responsible for the transport of oxygen throughout the body, and leucocytes that
mediate inflammatory responses.

Blood plasma
The blood plasma is treated as an incompressible fluid with constant viscosity.

The blood plasma is treated as an incompressible fluid with constant viscosity.

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇P + µ∇2v + ρ f (11)

∇ · v = 0 (12)

with v the flow velocity, ρ the density of the blood plasma and P the pressure. The
viscosity µ is assumed to be constant. f is the force density due to cohesion of
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Particle-Continuous Mixture Models III

activated platelets, which generates elastic stresses that influence motion of the blood
plasma.

The system is partitioned into cells where we assume that a cell has the same velocity
value as the blood flow. The average flow velocity for a cell i is

Vi =
∑
k

vK/Voli (13)

where vk is the flow velocity at site k and Voli is the volume of cell i . The flow energy
change for cell i caused by state change is

∆Eflow(i) = −Ke2Vi∆di (14)

where ∆di is the change of the centre of mass of cell i caused by the state change and
Ke2 is the flow energy constant.

To describe coagulation within the plasma, we use a rate equation approach for
species (i)

d [Cj ] =
∑
i

kij [Cj ]dt (15)
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Particle-Continuous Mixture Models IV

where [Ci ] is the concentration of species i and kij , i , j = 1, ..., n are the corresponding
rates.

The thrombin concentration (θ) dynamics is modelled by

∂θ

∂t
+ u∇θ = Dθ∇2θ +

N∑
i=1

∆θi (16)

where ∆θi is the thrombin generated by the i activated platelet, Dθ is the diffusion
coefficient and N is the number of cells in a discretization (c.f. Figure 10).

The production of fibrin is modelled by

∂ψ

∂t
= κθ . (17)

The effective energy of the system mixes energies

E = Eadhesion + Earea . (18)
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Particle-Continuous Mixture Models V

To model the adhesion we consider Potts spins si = (1, 2, . . . , q), interacting via the
Hamiltonian

−βH = K
∑
<i,j>

δsi ,sj . (19)

Here, this translates into

Eadhesion =
∑

(i,j,k)(i′,j′,k′)

Jτ(σ)τ ′(σ′)(1− δ(σ(i , j , k)σ(i ′, j ′, k ′))) (20)

where Jτ,τ ′ the binding energy per unit length. Cell of type τ have a prescribed target
area atarget(σ, τ).

Earea =
∑
σ

λ(a(σ, τ − atarget(σ, τ)) (21)

where ψ is the concentration of fibrin and κ the corresponding rate.

The flow force applied to a cell i is taken to be the integral of blood pressure along a
cell membrane
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Particle-Continuous Mixture Models VI

Fi =
∑
k

pknkSk . (22)

where k denotes the interface segment of cell i . pi is the pressure applied to the
blood?cell interface segmentk. nk is the membrane length of the blood?cell interface
segment k.

The flow energy change for the cell i is taken to be

∆Eflow(i) = −KelFi∆di (23)

where ∆di is the change in the position of the centre of mass of cell i caused by the
state change and Kel is a flow energy constant.
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Particle-Continuous Mixture Models VII

Figure 9: The left panel shows intravital confocal images of a developing venous thrombus.
The right panel shows the modelling approach. Images taken from [6].
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Particle-Continuous Mixture Models VIII
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Figure 10: The modelling approach. Images taken from [6].
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Excercises I

Exercise 1: Richardson’s Model [15]
In the Richardson’s model occupied sites remain occupied. Unoccupied
sites change state to occupied at time t + 1 with probability p if at least
one neighbor was occupied at time n. Show numerically that the
asymptotic shape of the object (in d = 2) has a straight edge if p > pc ,
where pc is a critical value. Determine pc .

Exercise 2: Williams and Bjerknes Tumor Growth Model [16]
This model generalizes the Eden model as a stochastic model for the
spread of cancer cells (skin cancer). At each time step a site can become
either ill with probability α or healthy with probability β. Thus the ratio
κ = α/β determines the behaviour with κ =∞ recovering the Eden
model. Rewrite the above Eden model algorithm to incorporate the
modification.

Exercise 3: DLA with reaction-controlled absoption
Assume a DLA model. Let P be the probability for a particle to react with
the nearest-neighbour site that is occupied. Modify the above program to
incorporate the changed absorption.
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Excercises II

Exercise 4: Continuum Model of DLA
In the continuum model of DLA each particle is assumed to have a radius
a. At every step the random walker is performing a gaussian random walk
with steps size ≤ a. The particles sticks to the aggregate is the distance
to the nearest particle is ≤ a. Modify the above program to incorporate
the changed absorption. Show that

d = 2 df = 1.71 (24)

d = 3 df = 2.5 (25)
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