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Introduction



Introduction I

There are four fundamental types of bio-macromolecules. Each type of macromolecule
is a polymer composed of a different type of subunit

Proteins which are composed of 20 amino acids

Polysaccharides which are composed of monosaccharides

Nucleic acids which are composed of 4 nucleotides

Ribonucleic acids which are composed of ribonucleotides.

In passing we note that these macromolecules are polar, i.e. they have a head and a
tail, because they are formed by head to tail condensation of polar monomers.

Many molecules essential to living systems, such as proteins and fats, are very large.
They are polymers. These are very large molecules made up of smaller units, called
monomers or repeating units, covalently bonded together. They are produced from a
small set of about 50 monomers. In the biological setting, macromolecules are often
created through a condensation or dehydration reaction, i.e. a loss of a water molecule
or other small molecule as two monomers or molecules join.

Why should we study macromolecules? Because they provide structural integrity and
shape in biological systems. Further the coupling of geometry and dynamics leads us
to insights into the workings of biological systems such as ion pumps for example.
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Introduction II

There are four macromolecules essential to living matter containing C, H, O, N and
sometimes S

Proteins

Carbohydrates

Nucleic Acids

Lipids.

Bio-polymers consisting of regularly repeating units tend to form helices. Thus we are
interested in the relationship between form and function and other physical properties
of these macromolecules in this chapter.

DNA, RNA and Proteins can be modeled for computational purposes in a variety of
ways [1]. Depending on the kind of question and the degree of abstraction, one has
the basic choice between a model on a lattice or in continuous space. The bond
fluctuation model [2] is one of the prominent representatives of a polymer model on
the lattice. The main advantage of this type of models is the computational efficiency
due to the restricted configuration space. With increasing computer power it was
possible to stay closer to reality by simulating polymers by continuum models. Two
widely used models of this class are the bead-spring [3] and the united-atom model [4].
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Some Measures I

The first measure describing a polymer is the contour length. Let N be the number of
repeating units (monomers). N is the degree of polymerization or chain length. Each
monomer unit has length b. Then the total contour length of the chain is L = Nb.

The conformation describes the geometric structure of a polymer. If two atoms are
joined by a single bond then a rotation about that bond is possible. If the two atoms
have other atoms or groups attached to them then configurations which vary in
torsional angle are possible. This is shown in Figure 1. Here we have introduced the
polar angle as the bond angle, i.e. the angle between two adjacent bonds.

Hbond angle =
kθ

2

∑
angles

(
cos θangle − cos θ0

)2
. (1)

Vibrations corresponding to bond-angle bending have frequencies of the order of 1013

sec. Non-vibrational internal motions are geometrically distinguishable at time scales
of around 1011 sec [5].
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Some Measures II
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Figure 1: Angle definition
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Some Measures III

Since different conformations represent varying distances between the atoms or groups
rotating about the bond, these distances determine the amount and type of
interaction between adjacent atoms or groups. Thus different conformations represent
different potential energies. There are several possible generalized conformations: Anti
(t, Trans), Eclipsed (Cis), and Gauche (g, + or -). In Figure 2 is shown the possible
potential energy with the corresponding labeling (the angle and labelling is also listed
in table 1).

Htorsion =
∑

dihedral angle

[
k1

2
(1− cosφ) +

k2

2
(1− cos 2φ) +

k3

2
(1− cos 3φ)

]
. (2)

Table 1: Name convention for specific angles and their property

Name of conformation Torsion angle Symbol Stability
Cis ±180◦ c unstable

Gauche ±120◦ g+, g− stable
Anti ±60◦ a+, a− unstable
Trans 0◦ t stable
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Some Measures IV
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Figure 2: A typical torsion potential
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Some Measures V

Two special conformations arise if we have pairs of angles:

tt results in a zig-zag chain

g−g− or g+g+ results in a helix.

Polymers are not rigid but can be easily twisted along the bonds of the backbone.
This gives rise, at finite temperatures, to different conformations of the polymer.
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Freely-Jointed Chain I

The simplest model of polymer conformation treats the molecule as a chain of rigid
subunits, joined by perfectly flexible hinges [6]. In this freely jointed chain model the
chain is made up of N links, each of length b and N + 1 beads or monomers with no
excluded volume (see Figure 3). Thus it corresponds to a random walk where each
step has length b (see Figure 10). This model is the most simple one for a single
polymer in solution but is not appropriate to double stranded DNA. This is because
individual covalent bonds do not have bending energies that are not small relative to
kB T . This, however, only applies if we want to describe the macromolecule on the
atomistic level. Often, we want to describe the macromolecule on a length scale,
where we can safely regard the polymer as flexible.
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Freely-Jointed Chain II

Abritray Angle 

Abritray Angle 

Figure 3: Freely-jointed chain
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Freely-Jointed Chain III

The joints of the chain are at positions Rn and are joined by the link vectors, also
called bonds

rn = Rn − Rn−1 . (3)

The end-to-end distance for a given conformation is given by

Re = R0 − RN =
N∑

n=1

rn (4)

which we assume to be a random variable.

Because the rn are uncorrelated we must have

〈rn〉 = 0 (5)

after averaging over all possible conformations and
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Freely-Jointed Chain IV

〈rnrm〉 = δnmb2 . (6)

Here the averaging is done over all possible orientations each having the same weight.

From these two equations we find that the average end-to-end vector is

〈Re〉 = 〈
N∑

n=1

rn〉 =
N∑

n=1

〈rn〉 = 0 (7)

and
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Freely-Jointed Chain V

〈ReRe〉 = 〈
N∑

n=1

N∑
m=1

rnrm〉 (8)

=
N∑

n=1

N∑
m=1

〈rnrm〉 (9)

=
N∑

i=1

b2 (10)

= Nb2 . (11)

The end-to-end distance square scales with the length of the polymer

〈R2
e 〉 ∝ N (12)

and it measures the average size of the polymer. Since we did not take into account
excluded volume effects we anticipate a more general result for the end-to-end
distance, if we take these into account, and write
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Freely-Jointed Chain VI

〈R2
e 〉 ∝ N2ν (13)

introducing the exponent ν. Thus ν = 1/2 here.
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Figure 4: End-to-end distance distribution for two biological macromolecules. The lower figure
shows the comparison of data on human chromosomes (taken from van Driel et. al 2007).
The blue curve shows the result for the random walk and the purple the result for a
self-avoiding walk fitted to the data points.
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Freely-Jointed Chain VII

]2 mµ [2r
0 5 10 15 20 25

Pr
ob

ab
ili

ty

0

0.02

0.04

0.06

0.08

0.1

 mµ 5.21267 ±Chromosome X: 8.90214 

 mµ 4.522 ±Chromosome 2L: 7.9981 

 mµ 4.14277 ±Chromosome 2R: 6.4893 

 mµ 4.42832 ±Chromosome 3L: 6.65312 

 mµ 4.84253 ±Chromosome 3R: 7.64063 

 mµ 5.09482 ±Chromosome 4: 9.24469 

Drosophila Squared End-to-End Distribution

Figure 5: Histogram representing the distribution of the end-to-end distance for two different
contour lengths (548nm circles, 748nm triangles) and how they collapse onto each other.
Taken from Dietler et. al. PRL 95, 158105 (2005)
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Freely-Jointed Chain VIII

DNA is much stiffer than an alkane chain. Hence DNA has a much larger 〈R2
e 〉 for a

given contour length Nb than does an alkane. Thus we need to parameterize the
stiffness of the chain. One such parameterization is the Kuhn length lK

〈R2
e 〉 = NK l2K (14)

Lc = NK lk , (15)

where we have introduced two parameters NK < N, the effective number of repeat
units and the Kuhn length lK . The Kuhn length thus gives a measure for the
statistical segment length.

A conceptually other measure is the persistence length ξp . It measures the length
along the chain over which the tangent vectors of the chain become de-correlated. It
is very useful in describing elastic properties of semiflexible polymers and deals with
the rotational-isomeric-states, stiffness, helicity as well as the fact that a real chain
can never fold back onto itself.

The persistence length for ideal chains is half of the Kuhn length.
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Freely-Jointed Chain IX

ξp = lk/2 Lc � lk (16)

and hence

〈R2
e 〉 = 2Npξ

2
p Lc � lk (17)

Lc = Npξp (18)

where Np is the contour length of the chain expressed in units of the persistence
length. For B-DNA one finds a statistical segment length of 100− 200 bp and a
persistence length of approximately ξp?50nm. Indeed biopolymers differ from artificial
polymers in that they are stiff on length scales relevant for the biophysical processes
they are involved in.

The probability distribution of the end-to-end vector is a Gaussian in the limit N →∞
(central limit theorem) since it is the sum of independent random variables and we
must have

PN (Re ) =

(
3

2πNb2

)−3/2
exp

(
−

3R2
e

2Nb2

)
(19)
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Freely-Jointed Chain X

which is properly normalized.

Note that the conformations of the polymer are random coils. A typical conformation
of the chain is shown in Figure 6.

We have introduced two length scales measuring the extend of the chain: N and Re .
Another measure is the radius of gyration Rg

Rg =

√√√√ 1
N + 1

N∑
n=0

〈(Rcm − Rn)2〉 (20)

with the center of mass

Rcm =
1

N + 1

N∑
n=0

Rn . (21)

For the freely jointed chain model we obtain

Rg =

(
N

6

)1/2
b . (22)
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Freely-Jointed Chain XI

Thus the ratio between the end-to-end distance and the radius of gyration is constant

〈R2
e 〉

〈R2
g 〉

= 6 . (23)

Figure 6: A typical random coil conformation
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Freely-Jointed Chain XII

We now look at the free energy of the chain assuming no interaction. Let W be the
number of accessible microstates of the chain. Then S(Re ) = kB lnW is the entropy
associated with a chain with an end-to-end vector Re . Since the system is athermal
we need to consider the micro-canonical ensemble for the calculation of the entropy.
The entropy difference between a chain held with end-to-end distance Re and one with
the end-to-end vector of zero is

∆S(Re ) = kB log
P(Re )

P(0)
(24)

from which we obtain the free energy difference

∆Fe = −T ∆S =
3
2

kB T

Nb2
R2 . (25)
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Freely-rotating Chain I

A step further can be taken by fixing the bond angle θ and allowing the torsion angle
φ to rotate freely. To calculate the end-to-end distance we need to consider the term

〈rnrm〉 (26)

Since the torsion angle is free only the component that is projected due to the fixed
angle contributes so that we have

〈rnrm〉 = b2(cos θ)|m−n| (27)

and with this

〈R2
e 〉 =

N∑
n=1

N∑
m=1

〈rnrm〉 (28)

= b2
N∑

n=1

N∑
m=1

(cos θ)|m−n| (29)

= Nb2
1 + cos θ
1− cos θ

. (30)
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Freely-rotating Chain II

Thus the scaling behaviour is the same as for the freely-jointed chain only the
Kuhn-length has changed.

We can generalize the above result assuming a finite correlation

lim
|m−n|→∞

〈cos θnm〉) = 0 (31)

With this assumption we have

N∑
m=1

〈cos θnm〉 = Cn (32)

and thus
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Freely-rotating Chain III

〈R2
e 〉 = b2

N∑
n=1

N∑
m=1

〈cos θnm〉 (33)

= b2N
N∑

n=1

Cn (34)

= Nb2C∞ (35)

where C∞ is called the Flory characteristic ratio.

To make the connection with the persistence length we note that

(cos θ)|m−n| = exp {|m − n| ln(cos θ)} = exp−
|m − n|

ξ
(36)

with

ξ = −
1

ln(cos θ)
(37)
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Freely-rotating Chain IV

we find the persistence length

ξp = bξ (38)
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Gaussian Chain Model I

We consider a chain made up of orientationally uncorrelated (freely-jointed) links
where the length of any link vector is no longer constant but has a probability
distribution

G(r) =

(
3

2πb2

)3/2
exp

(
−

3r2

2b2

)
(39)

with the expectation for the link length being

〈r2〉 = b2 . (40)

The probability distribution for the end-to-end vector is then

P(Re ) = P({rn}) (41)

=
N∏

n=1

(
3

2πb2

)3/2
exp

(
−

3r2n
2b2

)
(42)

=

(
3

2πb2

)3/2
exp

(
−

N∑
n=1

3(Rn − Rn−1)2

2b2

)
(43)
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Gaussian Chain Model II

and hence for the entropy

S = lnP =
N∑

n=1

lnP(rn) (44)

= const−
3

2b2

N∑
n=1

r2n . (45)

From this we obtain the free energy

F ({rn}) = E +
3T

2b2

N∑
n=1

r2n (46)

with the internal energy E being independent of {rn}.

Hence we obtain the same equilibrium distribution as for the freely-jointed chain.

Eq (43) also results if we start off with the Hamiltonian for a chain of springs

H =
3
2

kB T

b2

N∑
n=1

(Rn − Rn−1)2 (47)
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Gaussian Chain Model III

and we also obtain the scaling of the end-to-end distance

〈R2
e 〉 ∝ N . (48)
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Worm-like Chain Model I

A short-coming of the above models (besides they being phantom chains, i.e. no
self-avoidance) is that there is no intrinsic stiffness. Intuitively, we expect a bending of
the chain to cost energy. A model that provides this is the worm-like chain model
(WLC) . For this we start as above for the freely-rotating chain with a fixed
persistence length and simultaneously letting the bond length b and the angle theta

go to zero. We are seeking thus a a continuous description. We first pull on the
results that we have derived before

〈R2
e 〉 =

N∑
n=1

N∑
m=1

〈rnrm〉 (49)

= b2
N∑

n=1

N∑
m=1

(cos θ)|m−n| (50)

= b2
N∑

n=1

N∑
m=1

exp(−
|m − n|
ξp

) . (51)

Since we want b to tend to zero we can substitute

29 / 200



Worm-like Chain Model II

b
N∑

n=1

→
∫ Rmax

0
ds (52)

and thus

〈R2
e 〉 =

∫ Rmax

0
ds

∫ Rmax

0
ds′ exp(−

|s′ − s|
ξp

) (53)

with the result

〈R2
e 〉 = 2ξpRmax − 2ξ2p

(
1− exp(−

Rmax

ξp
)

)
(54)

We need to consider two case. First we assume that Rmax >> ξp , then we recover the
freely-jointed chain result

〈R2
e 〉 = 2ξpRmax (55)

Second, if we assume that Rmax << ξp then clearly
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Worm-like Chain Model III

〈R2
e 〉 ≈ R2

max (56)

so that the chain a just like a rod.

In Figure 7 is shown a comparsion of the worm-like chain model with data on
chromosomal yeast in interphase for small genomic distances.
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Worm-like Chain Model IV

Figure 7: Taken from Long-range compaction and flexibility of interphase chromatin in
budding yeast analyzed by high-resolution imaging techniques, Kerstin Bystricky, Patrick Heun,
Lutz Gehlen, Jörg Langowski, and Susan M. Gasser, PNAS November 23, 2004 vol. 101 no.
47 16495-16500
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Worm-like Chain Model V

As we have done before we are seeking to describe the worm-like chain model using a
Hamiltonian. The idea is to use a coupling between the bond

H = −ε
N−1∑
n=1

rn · rn+1 (57)

which is simply the one-dimensional Heisenberg model for ferromagnets. Here
|rn| = b. This model can be treated in the continuum limit where N →∞, b → 0 and
ε→∞ with

ε/N = constant , (58)

keeping the contour length also constant. Using

−rn · rn+1 =
1
2

[(rn − rn+1)2 − 2b2] (59)

we have
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Worm-like Chain Model VI

H = lim
b→0;ε,N→∞

εb

2

N−1∑
n=1

b

(
rn − rn+1

b

)2
. (60)

To cross over to the continuum limit we use the tangent vector with the arc length s

∂r(s)

∂s
= lim

b→0

(
rn+1 − rn

b

)
(61)

and
∑N−1

n=1 b →
∫ L
0 ds to find

H =
κ

2

∫ L

0
ds

(
∂r(s)

∂s

)2
=
κ

2

∫ L

0
ds

(
∂2R(s)

∂s2

)2

(62)

with the bending modulus κ = εb.

Thus the partition function is given by

Z =

∫
D[r(s)]δ(|r(s)| − 1)exp(−βH[r(s)]) . (63)
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Worm-like Chain Model VII

The bending modulus must be related to the persistence length. To find this relation
we need to calculate the correlation function

〈r(s)r(s′)〉 ∝ exp(−|s − s′|/ξp) . (64)

We can now calculate the mean squared end-to-end-distance and the mean squared
radius of gyration

〈R2
e 〉 = 〈

(∫ L

0
ds r(s)

)2

〉 (65)

=

∫ L

0
ds

∫ L

0
ds′〈r(s) · r(s′)〉 (66)

= 2ξ2p

(
L

ξp
− 1 + e−L/ξp

)
(67)

= L2fD

(
L

ξp

)
, (68)

where fD (x) = 2(x − 1 + e−x )/x2 being the Debye-function (see Figure 8).
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Worm-like Chain Model VIII
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Figure 8: The Debye-function
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Self Avoiding Random Walk I

The self-avoiding random walk (SAW) on a periodic lattice was considered by Orr [7]
as a model of a polymer chain. Such a self-avoiding random walk is shown in
Figure 11. In one dimension the problem of computing the partition function and other
properties such as the end-to-end distance is trivial and unsolved in higher dimensions.

Let cN denote the number of n − step self-avoiding walks (SAW) (equivalent upon
translation!). We can easily enumerate on the square lattice c1 = 4, c2 = 12, c3 = 36
and c4 = 100 and a simple estimate yields,

dN ≤ cN ≤ 2d(2d − 1)N−1 (69)

dN ≤ cN ≤ 2d(2d − 1)N−1 (70)

In general it is believed to be [8–10]

cN ≈ AµN Nγ−1 (71)
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Self Avoiding Random Walk II

with γ being a universal exponent (d = 2 γ = 32/43, d = 3 γ ≈ 7/6, d ≥ 4 γ = 1)
and µ the connectivity constant giving the average number of available steps for an
infinitely long walk.

For the partition function we have

ZN ∼ qN
µNγ−1 qeff < q(Λ) (72)

and thus for the average end-to-end distance

〈R2
e 〉 ∝ N2ν (73)

with ν ≈ 0.59 (in 3d) and γ ≈ 1.158 (in 3d ) from numerical calculations.
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Self Avoiding Random Walk III

Polymer Chain                                       Random Walk

Figure 9: From a continuous to a lattice description
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Self Avoiding Random Walk IV

Figure 10: A sample of a random walk in three dimensions on a lattice
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Self Avoiding Random Walk V

Figure 11: A self-avoiding random walk (SAW)
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Polymers at Membranes I

Polymers at Membranes

It allows to study the entropic effects on the wall as well as further studies using
realistically modeled biopolymers.

The model interpolates between the united atom model and the bead-spring
model. In contrast to these two models it uses non-spherical force fields for the
non-bonded. interaction

The main idea of this approach with a more general form of the force field is to
generalize the united atom model in a way that larger atom groups are combined
to one construction unit, but the possible anisotropy of these groups is still taken
into account.

As one wants the force field to degenerate into a sphere with increasing distance,
we use a con-focal force field inside this interaction volume:

Hinter = Vabs

(
d

(p)
1 + d

(p)
2

2
− c

)
, (74)

where d
(p)
1 and d

(p)
2 denote the distance of the point p to the focal points of the

ellipsoid and Vabs is the absolute potential.
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Polymers at Membranes II

For convenience we use only a repulsive part

Vabs(r) ∼ r−6 . (75)

The mass of the building units is distributed between the focal points of the
ellipsoids in the hard core region of the con-focal potential.

The main ingredient of the model is the mass matrix of our rod-chains. In order
to construct it we, must first calculate the Lagrangian of a single rod
Li = Ti − Vi with the kinetic energy Ti and the potential energy Vi . The
subindex i marks the position of the rods in the chain. This one-dimensional
homogeneous rod i has the length li starting at ~ai and ending at ~bi .

If we suppose that the rods all have the same mass m and that the velocity of the
rod mass scales linearly with the position between the boundaries of the rod, the
kinetic energy can be written as

Ti =
1
2

∫ li

0

m

li

 (li − x)~̇ ia + x~̇ ib

li

2

dx

=
1
6

m(~̇ ia
2

+ ~̇ ia~̇ ib + ~̇
ib
2
).
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Polymers at Membranes III

Adding the single terms of the rods building the chain we get the Lagrangian L of
the whole rod chain.

The equations of motion of the chain can be calculated from the Lagrange
equations of the second kind. Since the equations of motion separate in each
direction, we have only to solve three tridiagonal (N + 1)× (N + 1) matrices per
chain which consist of N rods per time step of the form

W~̈x = ~F (76)

m

6


2 1 0 0 . . .

1 4 1 0 . . .

0 1 4 1 . . .
...

...
...

...
. . .




ẍ0
ẍ1
ẍ2
...

 =


F10

F11 + F21
F22 + F32

...

 (77)

with the force Fij on the coordinate j of the flexible point i of the chain

Fij = −
∂Vi

∂j
(78)

and ẍi denote the accelerations of the flexible points of the chain. The flexible
points are the link points of the ellipsoids and the end points of the rod chain.
The sub-indices mark the positions in the chain: 0 and N + 1 are the end-points
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Polymers at Membranes IV

of the chain and the numbers between them denote the linking points of rods in
the chain.

The bonded interactions between neighboring units are given by harmonic length
and angle potentials:

Hbond =
1
2

k(r − r0)2 (79)

Hangle =
1
2

kθ(cos θ − cos θ0)2 (80)

with the bond lengths r and the bending angles θ. Here r0 and θ0 denote the
mean values.
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Mean-Field Theory I

Consider a wall with a repulsive r6 potential and a polymer grafted at the wall.
The constraint that the polymer is grafted and that one half-space is excluded
leads to a competition between the necessity to avoid the wall and the constraint
to be fixed at the wall.

Due to the entropy the monomers would like to stay as far away from the wall as
possible.

In order to do so they exert a pressure on the wall.

This pressure decreases radially from the grafting point.

For a theoretical treatment of the pressure we shall regard an elastic wall.

Let the surface of the wall be described by h(x , y). The thermodynamic
properties of the chain of length N grafted at the repulsive wall can be described
by the propagator GN (~r , ~r ′) resulting from the Edwards equation

∂GN (~r , ~r ′)

∂N
=

l2

6
∆GN (~r , ~r ′) (81)

with the GN (r , r ′) = 0 at the wall and limN→0 GN (r , r ′) = δ(r , r ′).
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Mean-Field Theory II

The partition function is then given by

ZN (l) =

∫
d~r ′GN (~r , ~r ′) , (82)

where the integral extends over all space that is available to the free end. The
Greens-function for a planar wall h(x , y) = 0 can then be factorized as

G
(0)
N

(~r,~r′) =

( 3

2πNl2

)3/2
exp

− 3(x − x′)2

2Nl2

 exp

− 3(y − y′)2

2Nl2


×

exp

− 3(z − z′)2

2Nl2

 exp

− 3(z + z′)2

2Nl2

 .

The partition function is therefore

Z
(0)
N (l) =

∫ +∞

−∞
dx ′
∫ +∞

−∞
dy ′
∫ +∞

0
dz ′G

(0)
N (~l , ~r ′) (83)

= erf(
l

2Rg
) , (84)

where Rg =
√

Nl2/6 is the radius of gyration of the free chain and erf the error
function.
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Mean-Field Theory III

To compute the pressure we introduce a small perturbation in h. We can write
the partition function as ZN = Z

(0)
N + Z

(1)
N + Z

(2)
N + . . ., where Z

(i)
N is of order hi

and Z0
N as in (83).

Due to the linearity of (81), each term satisfies the Edwards equation

∂Z
(i)
N

∂N
=

l2

6
∆Z

(i)
N i = 0, 1, 2, . . . (85)

The solutions of higher orders are coupled to the constraint. Now we have

0 = ZN (x, y, h)

= ZN (x, y, 0) + h(x, y)
∂ZN

∂z
(x, y, 0) +

h2(x, y)

2

∂2ZN

∂z2
(x, y, 0) + . . . .

For the linear contribution Z
(1)
N we get

Z
(1)
N (x , y , 0) = −h(x , y)

∂Z
(0)
N

∂z
(x , y , 0) , (86)

yielding [? ]

Z
(1)
N

(~l) =
l2

6

∫ N

0
dn

∫
dS
∂G0

N−n

∂z
(x, y, 0;~a)Z (1)

n (x, y, 0) . (87)
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Mean-Field Theory IV

Hence, the change in the height is, to first order, due to the work

∆W = W [h]−W [0]

= −kB T log

[
1 +

Z1
N

Z0
N

]

=

∫
dSp(x , y)h(x , y) ,

where p(x , y) has the symmetric form

p(r) =
kB T

2π(r2 + l2)3/2

(
1 +

r2 + l2

2R2
g

)
exp

[
−

r2 + l2

4Rg

]
(88)

with r =
√

x2 + y2.

To push at ~r = (x , y) an elementary volume of dV (r) = h(r)dS we need the work
dW = p(r)h(r)dS .

The function p(r) is the pressure.
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Mean-Field Theory V

The entire entropic force which the chain exerts on the wall is then given by

F =

∫ ∞
0

dr2πrp(r) =
kB T

l
exp

[
−

l2

4R2
g

]
(89)

=
kB T

l
exp

[
−

3
2N

]
. (90)

10 different chain lengths
N = 20,N = 40,N = 60,N = 80,N = 100,N = 125,N = 150,N = 175,N = 200
and N = 250 to study the pressure and the corresponding finite effects.
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Mean-Field Theory VI
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Figure 12: Shown is the distribution of the height with respect to the radius. The values are
divided by their respective radii of gyration for reasons of finite-size scaling.
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Mean-Field Theory VII
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Mean-Field Theory VIII
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Mean-Field Theory IX

Figure 14: Shown is the entropic force exerted on the wall by the polymer. The figure gives
the result for the Gaussian and for the chain with self-avoidance.
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Force-elongation behavior I

Knowing the distribution function, we can calculate the partition function of the
polymer with an external force:

Z =

∫
d~rpN (~r) exp

(
~f · ~r
T

)
. (91)

But it is also possible to derive the desired results by fundamental reasoning.

We only need to introduce the two characteristic lengths for the problem,
RF
∼= lNν and ξp = T/f . In general, the norm of the mean end to end distance

vector can be written as:∣∣∣〈~r(~f )
〉∣∣∣ = RFϕr

(
RF

ξp

)
= RFϕr (x), (92)

where ϕr (x) is a dimensionless function.

In the case of small forces one expects a linear response of the polymer, so that
we can write limx→0 ϕr (x) ∼= x . Using this we get:∣∣∣〈~r(~f )

〉∣∣∣ ∼= R2
F

T
f . (93)
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Force-elongation behavior II

If the chain is stretched stronger, we expect deviations from the linear law. Let us
assume that the stretched chain is composed of “blobs”, i.e. small chain-balls.
Each of these blobs has a size of ξp . In such a blob the external force is just a
small perturbation, so we can write for the number of monomers gp in the blob:

ξp
∼= lgνp (94)

or:

gp =

(
T

lf

)1/ν
. (95)

Considering that the number of the blobs must be N/gp , one obtains for the
three dimensional case: ∣∣∣〈~r(~f )

〉∣∣∣ ∼= N

gp
ξp
∼= Nl

(
fl

T

)0.689
. (96)

Hence for large forces the elongation behavior is not linear. For the case of
stretched polymers one can look again at the distribution function, which has the
form exp(−(r/RF )δ). The resulting entropy is:

S(r) = const + ln pN (r) = const −
(

r

RF

)δ
. (97)
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Force-elongation behavior III

In this case the corresponding elastic free energy amounts to:

Ftot = T

(
r

RF

)δ
− fr . (98)

If one minimizes this expression, one obtains the wanted relation between force
and end-to-end distance:

f ∼= δ
T

RF

(
r

RF

)δ−1
. (99)

We have seen how to calculate the relation between applied force and resulting
elongation for long chains with self-avoiding as well as without self-avoiding. This
result is important but not satisfactory. If one considers that the polymer cannot
rupture, than the extension should be Nl for very large forces but in the results
above it seems that the polymer chain can be stretched to infinite length.
Furthermore, the case of a restricted geometry is not included. Both will be done
in the next sections.
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Force-elongation behavior IV

First we calculate the work that is performed by a force ~f if the polymer is
elongated by d ~R. This is:

δA = −~f · δ ~R = −
N∑

i=1

~f · d~ri = −
N∑

i=1

dϕi , (100)

where ϕi = ~f · ~ri = f · l · cos(ϑi ). So the partition function is

Z =

∫
exp

(
N∑

i=1

(
f · l
T

)
cos(ϑi )

)
N∏

i=1

sin(ϑi )dϑi dϕi . (101)

The multidimensional integral can be separated:

Z =

(∫ 2π

0

∫ π

0
exp

(
f · l
T

cos(ϑ)

)
sin(ϑ)dϑdϕ

)N

. (102)

If one introduces β = f ·l
T
, one gets:

Z =

(
4π sinh(β)

β

)N

. (103)
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Force-elongation behavior V

The exact force-elongation behavior is:

R =
∣∣∣~R∣∣∣ = N · l · (coth(β)−

1
β

). (104)
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Force-elongation behavior VI
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Figure 15: Shown is the force-elongation behavior for the ideal chain.The free case is
shown as well as the case where one end of the chain is anchored at a repulsive wall.

Now we restrict the geometry by a wall. Suppose that one monomer is attached
to the wall. Starting with a single monomer, we will see what happens when we
introduce the wall. The possible angle between the force f and the monomer of
length l is restricted to a range of [0; π2 ]. Because of the cylinder-symmetry of
this problem, the angle ϕ is still arbitrary. For the one-monomer partition
function we get

Z1 =

∫ 2π

0

∫ π
2

0
exp(β cos(ϑ)) sin(ϑ)dϑdϕ. (105)

For the partition functions of the longer chains the ϕ-integration will also range
over 2π, so we define:

ZN = (2π)N · ẐN . (106)

For Ẑ1 we get:

Ẑ1 =
eβ − 1
β

. (107)

Now assume two monomers attached to a wall. If the chain is appended by a
further monomer the first one will not be influenced by the second. But the
possible angles between the new monomer and the force are dependent on the
position of the first monomer.
We have two different cases to consider. The first case is that the distance of the
end of the first monomer to the wall is large enough that all angles between the
second monomer and the force are possible. In the other case the end of the first
monomer is situated closer to the wall. This means the possible angles between
the force and the second monomer have to be calculated.
If we call the integration-angle of the two monomers ϑ1 and ϑ2 we get for the
possible angles:

0 ≤ ϑ2 ≤ π − ϑ1. (108)

So, we get for Ẑ2:

Ẑ2 =

∫ π
2

0

∫ π−ϑ1

0
exp(β(cos(ϑ1) + cos(ϑ2))) sin(ϑ1) sin(ϑ2)dϑ2ϑ1. (109)

With the substitution xi = cos(ϑi ) we have

Ẑ2 =

∫ 1

0

∫ 1

−x1
exp(β(x1 + x2))dx2dx1. (110)

Therefore, we obtain:

Ẑ2 =

∫ 1

0

eβ

β
(ex1 − e−β)dx1 =

eβ

β
Ẑ1 −

1
β

.
From now on, we define

I1 =

∫ 1

0
dx1. (111)

Let us look now at the case of three and more monomers. By taking more
monomers into our chain, we increase the number of configurations for the
polymer. At each step we know that the already existing monomers are not
influenced by the new one. So we must find out how the possible angle for the
last monomer is restricted.
We see that in a chain with N monomers, the position for the last one does only
depend on the position of the ending point of the (N − 1)th monomer. If this
monomer ends in a distance from the wall that is larger than a monomer length,
then the last monomer can take place in any position.
But if the end of the (N − 1)th monomer is closer to the wall than one monomer
length, the possible angles for ϑN are restricted. In this case we get for the
three-monomer-chain an upper integration limit of
ϑ3,max = π − ϑ = π − arccos(cos(ϑ1) + cos(ϑ2)). The partition function is now:

Ẑ3 =

∫ π
2

0

∫ π−ϑ1

0

∫ π−a(ϑ1,ϑ2)

0
exp(β(cos(ϑ1) + cos(ϑ2) + cos(ϑ3)))(112)

· sin(ϑ1) sin(ϑ2) sin(ϑ3)dϑ3dϑ2dϑ1,

where we used a(ϑ1, ϑ2)

a(ϑ1, ϑ2) =

{
arccos(cos(ϑ1) + cos(ϑ2)) 0 ≤ cos(ϑ1) + cos(ϑ2) ≤ 1

0 1 < cos(ϑ1) + cos(ϑ2)
.

(113)
With the substitution for a(ϑ1, ϑ2) and b(x1, x2) = cos(a(ϑ1, ϑ2)) we obtain

Ẑ3 =

∫ 1

0

∫ 1

−x1

∫ 1

−b(x1,x2)
exp(β(x1 + x2 + x3))dx1dx2dx3. (114)

b(x1, x2) can be written as

b(x1, x2) =
2∑

i=1

xi Θ(
2∑

i=1

xi )Θ(1−
2∑

i01

xi ) + Θ(
2∑

i=1

xi − 1), (115)

from which we obtain the integral:

Ẑ3 =

∫ 1

0

∫ 1

−x1

exp(β(x1 + x2))

β
(eβ − e−βb(x1,x2))dx2dx1 (116)

=
eβ

β
Ẑ2 −

1
β

∫ 1

0

∫ 1

−x1
eβ(x1+x2−b(x1,x2)). (117)

We can write:

I2 =

∫ 1

0

∫ 1

−x1
exp(β(x1 + x2 − b(x1, x2)))dx2dx1. (118)

Now we can generalize the formulae for N monomers in the following way:

ZN = (2π)N ẐN = (2π)N
∫ 1

0
...

∫ 1

−bN (x1,...,xN−1)
exp(β

N∑
i=1

xi )dxN ...dx1. (119)

With the integrals IN :

IN =

∫ 1

0
...

∫ 1

−bN (x1,...,xN−1)
exp

(
β(

N∑
i=1

xi − bN+1(x1, ..., xN ))

)
dxN ...dx1 (120)

and the bN

bN (x1, ..., xN−1) =

N−1∑
i=1

xi Θ(

N−1∑
i=1

xi )Θ(1−
N−1∑
i=1

xi ) + Θ(

N−1∑
i=1

xi − 1) (121)

one obtains by recursive insertion the following partition function

ZN = (2π)N

((
eβ

β

)N

− e−β
N−1∑
i=0

(
eβ

β

)N−i

Ii

)
. (122)

We use I0 = 1. Now we must calculate the Ii ’s, or we must find a way to simplify
them. As an alternative to the preceding, we can use for the case of three or
more monomers

Z =

(∫ 2π

0

∫ π

0
exp

(
f · l
T

cos(ϑ)

)
sin(ϑ)dϑdϕ

)N

. (123)

Here any angle between the monomers and the force is allowed. In the case with
the wall this is not always true for all monomers, hence we introduce an effective
angle for all monomers. If we do this, we get:

Z =

(∫ 2π

0

∫ ϑ0

0
exp

(
f · l
T

cos(ϑ)

)
sin(ϑ)dϑdϕ

)N

(124)

The calculation of this integral gives:

Z =

(
2π
β

(exp(β)− exp(β cos(ϑ0)))

)N

(125)

For the average end-to-end distance we obtain

R = N · l · (
1 + α exp(β(α− 1))

1− exp(β(α− 1))
−

1
β

), (126)

with α = cos(ϑ0).
For ϑ0 → π, what means α→ −1 we get the well-known formula:

R = N · l · (coth(β)−
1
β

). (127)

With β → 0 we get: R = Nl
2 (α+ 1). And for β →∞ we get: R = Nl . This gives

us now an approximation for the end-to-end distance if we have the effective
angle ϑ0.
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Figure 16: Shown are the force-elongation simulation results for all simulated chain lengths
compared to the ideal chain behavior.
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Figure 17: End-to-end-distance for large forces
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Figure 18: Elongation exponent for intermediate forces

In the small-force range we have two predictions for the force-elongation behavior, one
for simple random walks and the other for the self-avoiding walks. In both cases a
linear behavior is predicted. In the ideal case we expect a fix spring constant for any
polymer length, but in the self-avoiding case the spring constant depends of the chain
length. Now we will investigate if this dependence is reproduced by the simulations.
But first the theoretical spring constants

kid =
l

3T
(128)

ksa =
lN0.184

T
(129)

(here ”id” means ideal and ”sa” means self-avoiding). The fit to the data is shown in
figure (19), where we can see the spring constant for the different polymer length.
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Figure 19: Spring constants for the low force range
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Figure 20: Force-elongation behavior for 10 monomer chains
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Modelling of Biopolymers I

Biopolymers can be modeled for computational purposes in a variety of ways [1].
Depending on the kind of question and the degree of abstraction, one has the basic
choice between a model on a lattice or in continuous space. The bond fluctuation
model [2] is one of the prominent representatives of a polymer model on the lattice.
The main advantage of this type of models is the computational efficiency due to the
restricted configuration space. With increasing computer power it was possible to stay
closer to reality by simulating polymers by continuum models. Two widely used
models of this class are the bead-spring [3] and the united-atom model [4].

In both models monomers or parts of them are considered to be represented by
spherical force fields. In the united atom model the CH2 groups are modeled by a
spherical force field and the bonded interactions by harmonic forces. In this more
atomistic model the anisotropic intermolecular potential functions of polyatomic
molecules are constructed using spherical force fields. As an effect the inner degrees of
freedom of the molecules like the stiff bonds between the units must also be taken
into account. As the Newton equations have to be integrated such molecular-dynamic
simulations are restricted to small time scales.

Other models have been developed in order to adapt an aspherical model to a
molecule’s geometry i.e. J. Kushick’s and B.J. Berne’s model [11] and J.G. Gay’s and
B.J. Berne’s model [12]. They consider ellipsoids as a model for molecules and
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Modelling of Biopolymers II

calculate the forces between two interacting ellipsoids as a function of the overlap
volume.

The continuous backbone mass model in some sense interpolates between of the
united atom model and the bead spring model. On the one hand it tries to stay as
close as possible to the chemical realistic structure like the united atom model, but on
the other hand it integrates out all the inner degrees of freedom just the same as the
bead spring model in order to be computationally efficient. In contrast to these two
models it uses non-spherical force fields for the non-bonded interaction. The main idea
of this approach with a more general form of the force field is to generalize the united
atom model in a way that larger atom groups are combined to one construction unit,
but the possible anisotropy of these groups is still taken into account. The reasoning is
that the topology of the monomer has a strong influence on the physical properties.
The simplest anisotropic geometrical object one can think of is an ellipsoid of
rotational symmetric form and thus it is considered as the interaction volume of the
chemical sequences in our model.

As one wants the force field to degenerate into a sphere with increasing distance, we
use a con-focal force field inside this interaction volume:

Hinter = Vabs

(
d

(p)
1 + d

(p)
2

2
− c

)
, (130)
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Modelling of Biopolymers III

where d
(p)
1 and d

(p)
2 denote the distance of the point p to the focal points of the

ellipsoid and Vabs is the absolute potential. In the case of the BPA-PC we take only a
repulsive part

Vabs(r) = r−6 (131)

into account because from quantum chemical calculations the attractive part proves to
be negligible. The calculation of the distances is illustrated in Figure 21.
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Modelling of Biopolymers IV
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Figure 21: Interaction with a con-focal force field
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Modelling of Biopolymers V

To be able to predict the folded structure, we crucially depend on an energy function.
The energy function of all the parameters are used to describe the protein structure.
The task is then to find values of the parameters which minimize this function.

Molecular mechanics describes the energy of a molecule in terms of a simple function
which accounts for distortion from ideal bond distances and angles, as well as and for
nonbonded van der Waals and Coulombic interactions. Thus, such force field methods
ignore the electronic motions to calculate the energy of a system.

To model macromolecular systems the CHARMM potential (Chemistry at HARvard
Macromolecular Mechanics) [13, 14] , AMBER and GROMOS (GROningen
MOLecular Simulation System) force fields are often used. They are empirical force
field parametrizations that consists in general of six terms:
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Modelling of Biopolymers VI

V ({R}) =
∑

bonds
ci (li − l0)2 (132)

+
∑

bond angles
cα(θα − θ0)2 (133)

+
∑

improper torsion angles
cβ(τβ − τ0)2 (134)

+
∑

dihedral angles
tri(ω) (135)

+
∑

charged pairs

Qi Qj

εrij
(136)

+
∑

unbond pairs
cw Φ

(
Ri + Rj

rij

)
(137)

where
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Modelling of Biopolymers VII

rij = |Ri − Rj | . (138)

Here ε is the dielectric constant and Qi are the partial charges. The term tri refers to
a linear combination of trigonometric functions and and multiples of ω. The term Φ

refers to a Lennard-Jones potential. The parameters c etc. are usually fitted and
derived from first principles.

The approach taken by the Molecular Dynamics and the Langevin Dynamics method
discussed in the next section is to solve the equations of motion resulting from a force
field, such as the one above, numerically.
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Intermolecular Interactions and Electrostatic Screening I

The total potential energy of a single macromolecule can be divided into bonding and
non-bonding parts. The bonding energies are due to the local covalent bonds. We
shall now focus on the non-bonding part.

Charged polymers are essential for biology. Many functions depend critically on the
activity of DNA, RNA and proteins all of which are charged polymers. A human
nuclear DNA molecule carries hundreds of millions of charged groups. Inseparable
from the polymer phenomenology is the behavior of the small charged mobile anions
which dissociate from their backbones and interact strongly with the polymer chains.

Interactions between charges relevant in biology are almost always affected by the
presence of water molecules, ions, and other molecules. The interactions are reduced
in strength or are screened.

Non-covalent interactions are much weaker than the covalent bonds. We classify the
non-covalent interactions in (decreasing in strength)

Ionic interactions

Intermediate dipole-dipole forces

Hydrogen bonds

Hydrophobic interactions
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Van der Waals interactions: The force arises from induced dipole and the
interaction is weaker than the dipole-dipole interaction.

Ionic interactions
Let us first discuss the ionic interactions. What we always have to consider is
water. Pure H2O has pH 7.0. Hence even pure water is not the simple dielectric.
Many proteins, nucleic acids, and other organic molecules in cells are charged.
They give up ions to the solution when they are put in water. A good example is
DNA, which has one phosphate ion (PO4-) on each nucleotide. The anion is
usually Na+.
Important functional ionic groups are for the anionic case

carboxy
sulfate
sulfonate
phosphate

and for the cationic case

amino
imimo
ammonium
sulfonium
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phosphonium

On a more detailed scale biologically the following ions are of interest:

Univalent ions. The cations Na+ and K+ are present at roughly 0.1 M
concentrations, outside and inside cells, respectively. There are anions (negative
ions) at the same concentration to balance the charge.
Divalent ions Charge-2 cations like Mg2+ and Ca2+ are present at roughly mM
concentrations in cells, and in many biochemistry experiments.

Let q1 and q2 be two charges. Then the potential is given by

U(r) =
kq1q2

r
(139)

with k = 8.99× 109N∆m2/C2 in vacuum.

Table 2: Potential for two charges separated a distance of about 2nm at room
temperature

vacuum 30kB T

water 0.4kB T
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The charges, which are embedded in a dielectric material (water) interact by a
Coulomb interaction which is reduced in strength measured by the dielectric
constant. Water molecules have a very large electric dipole moment and are
forced to rotate to respond to an alternate external electric field. Hence water as
a liquid has a very large dielectric constant 80 at room temperature. This
reduction in strength of the Coulomb interaction is due to the polarization of the
particles of the dielectric medium - either induced or permanent dipoles around a
free charge will be oriented so as to terminate some of the field lines coming from
the free charge. The Coulomb interaction continues to have its long-ranged
character, just with a reduced strength (dielectric screening of the charge).

λD =

√
ε0εr kB T

2NAe2I
(140)

where ε0 is the permittivity of free space.
The Bjerrum length lB is the distance at which the Coulomb interaction between
two unscreened charges equals the thermal energy

lB =
e2

4πεε0kB T
(141)
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Example
The Bjerrum length at which two electron charges have an interaction energy about
kB T in pure water at standard pressure and temperature is 0.7 nm where we have used

k = 9× 109N∆m2/C2 (142)

e = 1.6× 10−19 C (143)

e = 80 (144)

kB T = 4× 10−21 J (145)

There is another very important screening effect that arises from free ions in
solution and which will cluster around charged objects, counter-ions and further
reduces the strength and range of the Coulomb interactions. These counter-ions
can be associated with the charged objects with energies in excess of 5kB T and
hence are not easily shaken off by thermal energy.
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Charge-dipole and dipole-dipole interactions
Many molecules are electrically neutral but have a permanent dipole because of
an asymmetric distribution of the electron cloud around the positively charged
nuclei. For example, in HCl, the valence electron of the H atom is donated to the
Cl atom, with H carrying a net positive charge, and Cl a net negative charge.
Similarly, water has a permanent dipole because the electron density is greater
near the more electro negative O atom.
Recall that the dipole moment is defined as |q| = qd where d is the separation
between 2 charges +q and ˘q. p is a vector and points in the direction from ˘q

to +q. When a molecule with a dipole moment p is placed in an electric field E,
the dipole has a potential energy

U(θ) = p · E = −pE cos θ . (146)
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Charge-dipole interactions
The electric field from a single point charge at a distance r from the charge is

E = kq/r2
. (147)

The potential energy of a charge-dipole system is

U(r) = −
k|q|
r2 cos θ . (148)

The potential energy now falls off as 1/r2, more rapidly than the charge-charge
system. In the absence of thermal motion, the dipole will align with the E field,
which corresponds to θ = 0.
Because of random collisions with the molecules of the surrounding medium, the
dipole will undergo a Brownian motion. Here we will consider only the change in the
orientation of the dipole as a result of random collisions and write down the
Boltzmann probability that the dipole makes an angle θ with the E field as

P(θ) ∝ exp(−βU) = exp(pEβ cos θ) (149)

The average value of the potential energy, averaged over all possible orientations
whose probability is given by the Boltzmann distribution, can be written as

〈U〉 = −
1
Z

∫ π

0
dθpEcosθepEβ cos θ2π sin θ , (150)

where Z is the normalization constant. Solving this integral yields
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〈U〉 = −pE

(
coth

(
pE

kB T

)
−

kB T

pE

)
(151)

which, in the limit pU � kB T , simplifies to

〈U〉 = −
p2E2

3kB T
(152)

Substituting for the electric field due to a point charge q at a distance r from the
charge, we get

〈U〉 = −
(kqp)2

3kB Tr4 (153)

With thermal averaging, the charge-dipole interaction falls off as 1/r4.
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Dipole-dipole interactions
The interaction energy of two permanent dipoles depends on their relative
orientation, and might be expected to be zero overall for a compound if all
orientations are possible. This would be true if the molecules were completely free
to rotate, but they are not and some orientations are preferred over others.
Let p1 and p2 be two dipoles. The potential energy has the form

U(r) = −E1 · p2 = k
p1p2

r3 F (θ1, φ1, θ2, φ2) , (154)

where E1 is the electric field from dipole p1and depends on the angular position of
p2 relative to p1 and their relative orientations. The distance dependence 1/r3
comes from the radial dependence of the electric field E1 of dipole p1.
The thermal averaging with Boltzmann probabilities, in the limit U � kB T , gives

〈U〉 = −
2
3

(kp1p2)2

3kB Tr6 . (155)

Thus the potential energy between two dipoles falls off as 1/r6 power, i.e.,
dipole-dipole interactions are short-range interactions.
Van der Waals interactions
Perhaps the most important class of dipole-dipole interactions are the ones where
one or both molecules do not have a permanent dipole. These interactions are valid
for any two atoms that come into close contact with each other, and are called Van
der Waals interactions. .
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Dipole-induced dipole interactions
A molecule with a permanent dipole p1 can induce a dipole in another polarizable
molecule. In this case the induced dipole moment p∗2 points in the same direction as
the inducing electric field E1. The potential energy of interaction between p1 and p∗2
takes the form

U(r) = −
kp1p∗2

r3
f (θ) (156)

where the minus sign indicates that the interaction is always attractive, since the
induced dipole always follows the direction of the instantaneous electric field. θ defines
the angular position of p∗2 relative to p1 and the electric field E1 is independent of the
azimuthal angle φ.
The magnitude of p∗2 depends upon the strength of the electric field at position (r, θ)

p∗2 = ε0α2E1(r, θ) = ε0α0
kp1

r3
f (θ) , (157)

where α2 is the polarizability of the second molecule. The interaction potential is
given by

U(r) = −α2ε0
k2p2

1
r6

f 2(θ) , (158)

where again we have a 1/r6 dependence in the absence of thermal averaging. Hence
averaging will also give the same contribution since we only need to average over the
angle θ.
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Induced dipole-induced dipole interactions
A fluctuating electric field environment around each atom induces a fluctuation dipole
moment that is proportional to the polarizability of the atom. This instantaneous
dipole can then induce a dipole in a neighbouring atom, resulting in an attractive
potential that also has a 1/r6 dependence.
Short-range repulsive interaction
As the atoms get too close, at some point there is a strong repulsion from overlapping
electron clouds and Pauli’s exclusion principle whereby filled electron shells of an atom
cannot accommodate any more electrons.
Lennard-Jones potential
A commonly used analytical form that lumps together all dipole-dipole interactions and
includes both the attractive and the repulsive terms is the Lennard-Jones potential,
where the repulsive term is approximated as having a 1/r12 dependence

ULJ(r) = 4ε

[(
r

σ

)−12
−
(

r

σ

)−6
]

. (159)

The atoms can be treated as spheres defined by a van der Waals radius that is a
measure of how close another atoms can come before a strong, very short range,
repulsive force kicks in.
Some typical Van der Waals radii of atoms are hydrogen 1.2 , oxygen 1.4 , nitrogen
1.6 , and carbon 2 .
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Hydrogen bonds
A very important interaction responsible for the structure and properties of water,
as well as the structure and properties of biological macromolecules, is the
hydrogen bond. A hydrogen bond is an interaction between a proton donor group
D-H and a proton acceptor atom A.
D-H is strongly polar, which means that the electron density is primarily around
the electronegative atom (examples, F-H, O-H, N-H, S-H in order of decreasing
polarity). The acceptor atom A is also strongly electronegative.
The hydrogen bond interaction is more than just an ionic or dipole-dipole
interaction between the donor and the acceptor groups. The distance between
the H and A in a hydrogen bond is less than the sum of their respective Van der
Waals radii.
The strength of the hydrogen bonds in biological macromolecules ranges from
2kB T to 5kB T .
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Hydrophobic interactions
Another very important interaction is the hydrophobic interaction. As the term
hydrophobic suggests, this interaction is an effective interaction between two
nonpolar molecules that tend to avoid water and, as a result, prefer to cluster
around each other.
Unlike all the other interactions that we have studied so far and which are
pairwise interactions between atoms or parts of molecules, the nature of the
hydrophobic interaction is very different. It involves a considerable number of
(water) molecules, and does not arise as a result of a direct force between the
nonpolar molecules.
Nonpolar molecules are not good acceptors of the hydrogen bond. When a
nonpolar molecule is placed in water, the hydrogen bonding network of water is
disrupted. The water molecules therefore reorganize around the solute and make
a sort of cage, similar to the structure of water in ice, in order to gain back the
broken hydrogen bonds. This reorganization results in a considerable loss in the
configurational entropy of water and therefore an increase in the free energy G.
If there are two or more such nonpolar molecules, the configuration in which they
are spatially together (clustered together) is preferred because now the hydrogen
bonding network of water is disrupted in one (albeit bigger) pocket, rather than in
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several small pockets. Therefore, the entropy of water is larger when the nonpolar
molecules are clustered together, leading to a decrease in the free energy.
At equilibrium, the configuration with the lower free energy and which has a
higher Boltzmann probability, is the preferred configuration.
Hydrophobic interactions have strengths of a few kB T and are comparable in
energy to hydrogen bonds.
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Figure 22: Lennard-Jones potential for the parameter σ = 1.
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Pruning

Configurational Bias

Bond Fluctuation Model

If we restrict the chain to a lattice then we need to consider random walks. More
precisely we are interested in its trajectory, as this is the polymer chain contour. This
idea was proposed by Kuhn. Of course, such a model can only capture ?universal?
properties determined by long length scales. Indeed, the standard models used in the
statistical mechanics of polymers are combinatorial structures such as random walks,
self-avoiding walks, lattice polygons and lattice trees. While lattice models lack atomic
details, they contain the fundamental microscopic attributes of polymers in that they
show linear connectivity, chain flexibility, excluded volume- and sequence-dependent
intra-chain interactions.

Note that here for simplicity we do not take excluded volume into account. This of
course can easily be added.
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Algorithm 1 Reptation Algorithm

1: Assume that we have generated a random walk.
2: Choose one of the end points at random and delete this point.
3: Choose one the end points at random.
4: Add the deleted point to the chosen end with a random direction.
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1 a = 0;
// Monte Carlo Loop

3 for(step =0; step <maxSteps; step ++)
{

5 save = a;
t = selectElement(a);

7 a = std::get <0>(t);
b = std::get <1>(t);

9 c = std::get <2>(t);

11 position = selectMove(c,polyChain);
if (acceptMove(position ,data)) {

13 p = polyChain[b];
data.erase(p);

15 polyChain[b] = position;
data[position] = b;

17 } else {
a = save;

19 }
}

Code 1: Reptation Algorithm

85 / 200



Lattice Polymer Models: Pivot Algorithm

Let W denote the set of self-avoiding walks of length N on a lattice λ. Further let
G(λ) be the group of lattice symmetries. The pivot algorithm [15] takes a
self-avoiding random walk and pivots the walk to generate a new walk from the set W

such the sequence of generated walks yields a Markov chain which is aperiodic and
irreducible with uniform stationary distribution π.

Algorithm 2 Pivot Algorithm (Sokal)

1: Start with a self-avoiding walk ω0 ∈W .
2: Next choose an integer i uniformly from the set {0, 1, 2, ...,N − 1}. The site con-

nected with this index is the pivot site x = ωt (i).
3: Select a lattice symmetry g uniformly from the symmetry group G .
4: Set ω̄(k) = ωt (k) for k ≤ i , and ω̄(k) = g(ωt (k)) for k > i .
5: if ω̄ is self-avoiding then
6: ωt+1 = ω̄.
7: else
8: let ωt+1 = ωt .
9: Goto 2. for the next generation t := t + 1.

10: end if
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The sequence {ωt} is aperiodic and irreducible with uniform stationary distribution π.
The sequence further is reversible

π(ωi )P(ωi , ωj ) = π(ωj )P(ωj , ωi ) . (160)

Since π is uniform, we need to show that P is symmetric. Suppose there are m ways
to move, with one pivot, from a self-avoiding walk ω to another self-avoiding walk ω̄.
For i = 1, 2, ...,m, consider the pairs (xi , gi ). Each pair gives a transition, using the
pivot algorithm from ω to ω̄.

Thus,

P(ω, ω̄) =
m∑

i=1

P(g = gi ) · P(x = xi ) . (161)

Notice that the pairs (xi , g
−1
i ), for i = 1, 2, ...,m give one-step transitions from ω̄ and

that P(g = gi ) = P(g = g−1i ) because g is chosen uniformly. Therefore

P(ω, ω̄) =
m∑

i=1

P(g = gi ) · P(x = xi ) =
m∑

i=1

P(g = g−1i ) · P(x = xi ) = P(ω̄, ω) .

(162)
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A very simple but useful model for a polymer chain is the united atom model (c.f.
Figure 23) In addition to harmonic chain forces which keep the bond lengths next to
the equilibrium value, we model the fluctuation of bond angles, again by a quadratic
potential. Between monomers which do not participate in mutual bond length or bond
angle interactions, Lennard–Jones forces are acting, both to model an excluded
volume effect and to hold the polymer system together. Note that we neglect any
torsional potential in the present study. To be explicit, the Hamiltonian of the model
is of the general form

H = H1 +H2 +H3 (163)

H1 =
∑

i

1
2

kb(li − l0)2 (164)

H2 =
∑

i

1
2

kθ(cos θi − cos θ0)2 (165)

H3 =
∑
i<j

u(rij ) (166)
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where

u(rij ) =

{
uLJ (rij )− uLJ (rc )− ∂

∂rc
uLJ (rc )(rij − rc ) rij < rc

0 rij ≥ rc
(167)

and

uLJ (rij ) = 4ε
∑
i,j

[(
σ

rij
)12 − (

σ

rij
)6] (168)

Note that the Lennard-Jones part of the potential is cut-off at 1.5σ and analytically
continued to zero.

The potential consists of the interaction along the chain with H1 being bond length
potential and H2 being the bond angle potential. The interaction part between
different chains, as well as from monomers along the chains more than three units
apart is given by H3. We did not include the torsional potential part in the interaction
purely for computational convenience.
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r
bond

θ

a)                                                b)

Figure 23: The definition of the bond length and the bond angle potential
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Excluded volume interactions are simulated by the WCA (Weeks-Chandler-Andersen)
potential [16], which was designed to model excluded volume interactions by a
short-range repulsive force. It has been used in several other MD studies on
polymers [17]. The WCA potential is basically a truncated and shifted Lennard-Jones
potential with the following functional form,

UWCA(r) =

4ε
((

σ
r

)12 − (σ
r

)6
+ cshift

)
r < rcut

0 r ≥ rcut

(169)

Here rcut = 6√2 and cshift = 1
4 are chosen such that the minimum of the potential is

UWCA(rmin) = 0, the attractive part of the Lennard-Jones interaction being cut off.
The WCA potential has two parameters ε and σ. σ defines the radius of the
monomers’ hard core. ε controls the energy penalty of another monomer penetrating
this hard core.

Simulating polymers with excluded volume interactions renders the use of a harmonic
potential for the backbone potential as in eq. (??) impossible. A harmonic backbone
potential in principle allows two adjacent beads to adopt a huge separation larger than
their hard-core diameter σ, which would result in the possibility of bond crossings. To
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circumvent this problem, it is convenient to use the finitely extensible nonlinear elastic
model (FENE) potential.

UFENE(r) =

{
− 1

2 kFENE R2
0 log(1− (r/R0)2) r < R0

+∞ r ≥ R0
(170)

It is similar to the harmonic potential but grows to infinity at a predefined distance
R0. The pair potential between two beads (FENE + WCA) is displayed in Fig. ??.

The looping potential is chosen to be the same as in the original model, i.e. a
Gaussian with Bernoulli-distributed random variables,

Uloops =
1
2

N∑
i<j
|i−j|>1

κij ‖ xi − xj ‖2 .

Here, the parameters are the looping probability ¶ and the interaction strength κloops

(the κij being either this value or zero).
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The following parameters are chosen for the simulation runs:

R0 = 1.6σ κloops = 2.0

kFENE = 10.0 temperature T = 1.0

σ = 1.0 friction Γ = 0.5

ε = 20.0 timestep t = 0.006

Special care is required for the relation between R0 and σ. If R0 is too large, other
parts of the chain may pass through the gap between two monomers. Setting
R0 = 1.6σ is a reasonable choice to prevent from such bond crossings [17].
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Proteins (see Figure 27 for an example ) are the machines and building blocks of living
cells. They are polymers of the 20 naturally occuring amino acids listed in table 3.
The polymer size can vary from about 50 amino acids monomers with a molecular
weight of 5, 000 to very large containing 4, 000 amino acids monomers with a
molecular weight of larger than 513, 000

Proteins have several functions in living systems:

Structural (muscle, tendons, cell membranes, ...)

Protection/defense (antibodies)

Regulation (enzymes and hormones)

Movement (assist other molecules into/out of cells)

These functions of proteins are a direct consequence of their shape. Recall from
Figure ?? that all amino acids have a COO and a NHHH part or a COOH carboxyl
and NHH amino part. In addition, there is a side chain usually labeled R. The
configuration of the side chain is called rotamer. This is due to the fact that the
tetrahedral geometry stays the same and the main degree of freedom is rotation about
the carbon bonds. In Figure 24 is shown the amino acid Analine and its geometry.
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Table 3: List of the 20 amino acids. The single letter code is used when comparing and
aligning sequences of proteins
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amino acids 3-letter code single letter code
Alanine Ala A
Cysteine Cys C

Aspartic AciD Asp D
Glutamic Acid Glu E
Phenylalanine Phe F

Glycine Gly G
Histidine His H
Isoleucine Ile I
Lysine Lys K
Leucine Leu L

Methionine Met M
AsparagiNe Asn N
Proline Pro P

Glutamine Gln Q
ARginine Arg R
Serine Ser S

Threonine Thr T
Valine Val V

Tryptophan Trp W
TYrosine Tyr Y
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To form a protein, amino acids are bonded together in sequence and fold into a
protein. Each protein has a unique three-dimensional structure. It was shown [18] that
a protein in its natural environment folds into, i.e. vibrates around, a unique three
dimensional structure, the native conformation, independent of the starting
conformation.

Figure 24: The amino acid Alanine. Note that the bond directions for carbon are the same as
from the centroid of a tetrahedron to the vertices.
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Figure 25: β-sheet. The protein thioredoxin contains a five-stranded beta sheet comprised of
three parallel strands and three antiparallel strands. The entire protein is shown as a cartoon
with the beta strands (three parallel strands and three antiparallel strands) colored red and
alpha helices colored yellow.
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Figure 26: Protein 1f9m

There are four levels of architecture in proteins
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Primary structure: The sequence of peptide-bonded amino acids (as in the
example: RSDAEPHYLPQLRKDILEVICKYVQIDPEMVTVQLEQKDGDISILEL-
NVTLPEAEELK). This is determined by protein
synthesis.

Secondary structure: The regular, recurring arrangement in space of adjacent
amino acid residues in a polypeptide chain. Two main types of secondary
structures have been found in proteins, namely the α-helices and β-sheets. The
α-helix-complex has already been studied in a previous section. In a β-sheet, two
or more polypeptide chains run alongside of each other and are linked in a regular
manner by hydrogen bonds between the main chain C=O and N-H groups.
Hence, all hydrogen bonds in a β-sheet are between different segments of
polypeptide. An example of one strand of a β-sheet is shown in Figure 25.
A third type of secondary structure are loops. A loop is a section of the sequence
that connects the other two kinds of secondary structures.

Tertiary structure: The spatial arrangement among all amino acids in a
polypeptide. The twisted shape is slightly flexible, and the chain folds upon itself.

Quaternary structure: The spatial relationship of polypeptides or subunits.
Several proteins interact and form complexes.
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From the point of view of polymer physics the protein is simply a polymer consisting
of a long chain of amino acid residues, i.e. a polypeptides.

Figure 27: MinE protein showing α-helices and β-sheets.
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An important protein which exists in both monomeric or globular (G-actin) and
polymeric or filamentary (F-actin) forms is actin. The filaments can form a network of
entangled and crosslinked filaments and is the basis for the cytoskeletal network.
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The long-standing question is: how do proteins fold? A protein folds due to the angles
φ and ψ between the carbon atom of a residue and the neighboring atoms, i.e. N and
CO, in the peptide bond -N-C-(CO)-. These angles can assume only a few values
independently of each other. Denaturants such as urea added to the system caused
proteins that are folded in the native conformation to loose tertiary structure and
revert to a random coiled state. After removal of the denaturants, the protein folds
back into the native conformation.

The protein folding problem entails the mathematical prediction of (tertiary,
3-dimensional) protein structure given the (primary, linear) structure defined by the
sequence of amino acids of the protein. With some exceptions, proteins fold
spontaneously. What we want to have is a theoretical model that accurately predicts
the folding and properties of the fold. The problem lies in the fact that a variety of
globally different structures have very low energies, but within a few kB T of each
other. Hence, we would need a very good energy function for possible predictions and
the ensuing dynamics are glassy as we have seen before.

What we would like to predict is for example

the number of observable thermodynamic states

the rate of folding
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the effect of specific mutations on the folding rate

Folding is an interesting problem because it involves mathematical modeling and
numerical analysis. It is a extremely challenging task which has not been satisfactorily
solved to date. Here we can only give a very brief introduction into some current
methods.

Basically, we need to distinguish between continuous and discrete models. Within
continuous space models, a crucial problem is of course the large number of degrees of
freedom. The configuration space is an n dimensional space, where n = 3× number of
atoms in molecule. For example, the bacteriorhodopsin has 3576 atoms and hence we
have 10728 coordinates! This results in the Levinthal?s paradox [19]:
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The 3-D structure of a protein is determined by the dihedral angles.
These angles have a few preferred values that correspond to the local
minima of torsion energy around each rotation bond. We only have to
consider about 10 conformations per AA in a polypeptide chain. This means
that we have to examine at least as many as 10N conformations for a protein
with N amino acids. Assuming that a protein can sample of the order of
1014 structures per second, would take this protein about 1026 seconds or
1018 years to examine all the possible conformations. This is longer than the
age of the universe.

Indeed, the problem of finding the minimum energy configuration is NP-complete
under a variety of models. Consequently, it is still impossible to determine the
minimum energy structure for larger proteins based on the knowledge of only their
sequence.

Since, for the foreseeable future it remains doubtful, that we find a satisfying solution
for the molecular mechanics of the folding pathway, starting from the random coil
conformation to the folded pattern that will emerge. The standard approach is to
investigate models that are reduced in complexity. These can be discrete protein
models on a lattice to reduce the conformational degrees of freedom or on the other
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end of the spectrum the reduction to paths in a random energy landscape model. We
have already touched on the energy landscape models and will here focus on molecular
modeling and lattice models.

Figure 28: Time scales for the formation of structural elements in protein folding (Taken from
O. Bieri and T. Kiefhaber, Biol. Chem. 80, 923-929 (1999)
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Folding as a Spin Glass Problem I

There is an analogy between the spin glass problem and the folding problem. In the
considered Hamiltonian there is frustration due to local free energy minima

H = −
∑

i

(εi

∑
j

Ji,i+1))−
∑

ij

Kij . (171)

Here εi is the energy of the ith residue, Ji,i+1 are nearest neighbour interactions and
Kij are short range interactions between residues. To reach the global minimum
simulated annealing is one of the few known algorithms assuring convergence to a
global minimum. It is often used in combination with efficient steepest descent
methods, such as conjugate gradients, as a way for avoiding getting trapped in local
minima. However much hinges on the choice of the annealing schedule.

lim
T→0

πi (T ) = lim
T→0

exp{−Ei/kT}∑
j exp{−Ej/kT}

(172)

= lim
T→0

exp
{

E∗−Ei
kT

}
∑

j exp
{

E∗−Ei
kT

} (173)
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Folding as a Spin Glass Problem II

where,

E∗ = min
i

Ei = Global min of energy (174)

Thus, the exponents are always either zero or negative. In the limit when T → 0 the
terms with negative exponents disappear and we get

lim
T→0

πi (T ) =

{
1

N∗ if Ei = E∗

0 otherwise
(175)

where

N∗ = |{i : Ei = E∗}| . (176)

Thus, limT→0 πi (T ) is uniformly distributed over the set of states of global minimum
energy!
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Algorithm 3 Simulated Annealing with Metropolis Monte Carl

1: choose an initial configuration c
2: for T = T0,T1, ...,Tm decreasing do
3: for mcs= 0; i < mcsmax do
4: choose a new trial configuration ct ;
5: compute W = exp{E(c)/T − E(ct )/T};
6: generate a random number R between 0 and 1
7: if W > R , accept the trial configuration as the new configuration of the

system;
8: set c = ct ;
9: end for

10: end for
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Along the same line of though is constructed the simulated tempering [? ] and the
Metropolis-coupled Markov chain Monte Carlo [? ] . The basic idea is to use m

different chains with distributions πi (i = 1, ...,m). From time to time we attempt to
swap a state from chain i with one from chain j . For example we may choose [? ]

πi = π1/i , i = 1, ...,m (177)

i.e., for large m we would use a nearly uniform distribution. Suppose that we select
chains i and j , at time t and we propose to swap y t

i = x t
j and y t

j = x t
i . With

probability

min

{
1,
πi (y t

i )πj (y t
j )

πi (x t
i )πj (x t

j )

}
(178)

the move is accepted.
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Lattice Protein Models I

If we are to use a lattice to hold a protein chain, then monomers are represented using
uniform size and the bond length is considered uniform. Consider a N-amino acid
polypeptide which is described by a polymer on a lattice in dimension D with a
prescribed symmetry. For the moment, we shall use any general lattice Λ generated by
the symmetry group G that consists only of translations. Each amino acid occupies
one site on the lattice, and each peptide bond sits on a bond of the lattice. The
folding of lattice proteins amounts to exploration of the ensemble of self-avoiding walk
(SAW) configurations. What we are interested in is to count conformational states:
How many conformational states are there for the N-monomer polymer that have a
low energy (we will be more precise later).

If we are to enumerate the number of possible conformation one strategy is to use a
Monte Carlo method to generate a Markov chain that will give the appropriate
distribution at temperatures T <∞. Starting with a given chain on our lattice we can
change the conformation of the chain using three basic moves as depicted in
Figure 29. The repeated application of the move set containing end bends, kink and
crankshaft moves respects linear connectivity and is applied such that the condition of
excluded volume is maintained. Furthermore this sampling must be ergodic and satisfy
detailed balance.
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Lattice Protein Models II

end-bond move
kink move crank shaft move

Figure 29: Possible move to change the conformation of a self-avoiding random walk (SAW)
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Lattice Protein Models III

This algorithm will give rise to conformations that can now be studied with respect to
mappings of amino acid sequences yielding interaction energies. We will focus here on
one model.

The hydrophobic-hydrophilic model [20] is a free energy model that models the belief
that a major contribution to the free energy of the native conformation of a protein is
due to interactions between hydrophobic amino acids that tend to form a core in the
spatial structure shielded from the surrounding solvent by hydrophilic amino acids.
The free energy of a conformation (see Figure 30) depends thus on the number of
non-adjacent hydrophobic amino acids that occupy adjacent grid points in the lattice.
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Lattice Protein Models IV

Figure 30: Conformation in the HP model. The black dots denote the hydrophobic acids.
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Lattice Protein Models V

In the HP Model the 20 amino acids reduced to a two-letter alphabet, H and P, where
H is a hydrophobic amino acid, and P is a polar or hydrophyllic amino acid (see
Figure 31). The hydrophobic force is presumed to be dominant. For the interaction
energy we take the values as shown in table 4.

Table 4: Energy in the HP Model

H P
H -1 0
P 0 0
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Figure 31: The hydrophobic amino acids
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Lattice Protein Models VII

On a more abstract footing we start with sequence s, which is an element of {0, 1}∗,
where 0 denotes P and 1 denotes H. Each conformation must be self-avoiding. We
have connected neighbors: i and j are connected, if j = i + 1 or j = i − 1 independent
of the conformation. Further, there are topological neighbors: i and j not connected
and ||w(i)− w(j)|| = 1. The free energy of conformation is the negative number of
HH-neighbors. Thus, we want to maximize HH contacts in hydrophobic core. A
conformation is given by

w : (1...|s|)→ Z d (179)

and the energy by

E =
∑

1≤i<j≤N

Bi,jδ(Ri ,Rj ) , (180)

where δ(Ri ,Rj ) = 1 if ||Ri − Rj || = 1 and i 6= j ± 1 and Bi,j = −1 if i and j are both
H and 0 otherwise. Thus the energy is given by minus the number of topological HH
contacts. On a more refined footing the values for the potential B are taken to be
contact energies taken from tables derived from statistics on databases.
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Rewriting this model slightly in the form

H =
∑
i<j

εi,j

[
δ(|Ri − Rj | − σ)− δj−1,i

]
(181)

shows that we are dealing with a model that falls into the class of the random
heteroploymer models (see 182). Here σ is the nearest neighbour distance. The
interaction energy between monomers i and j , εi,j , can assume 3 values depending on
the type of monomers bounded: {H − H,H − P,P − P}. These values are chosen to
minimize the Hamiltonian when H-like amino acids are buried inside the protein and
P-like amino acids are left on the surface.

One choice (see for example [21]) of the interaction energy (in arbitrary units) is:

εHH = −2.3, εHP = −1 and εPP = 0.

It was shown that the class of the HP-models is NP-complete [22, 23].

Let s be a sequence and c be a maximally compact self-avoiding structure. If the
sequence has a unique lowest-energy state, or ground state, we say the sequence can
design the structure. Figure 32 shows a conformation which is very highly designable.
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Figure 32: A conformation which is highly designable within the HP-model
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Conformations and Energy Landscapes I

The conformations of a macromolecule give rise to a complicated potential energy
surface. The free energy landscape represents the configuration space of energy and
entropy available to a macromolecule. Thus local minima or metastable states, basins
of attraction and the saddle points separating them, appear. To understand and pave
the way for the discussion on protein folding we qualitatively describe the situation.
Let us divide the degrees of freedom of the polymer into two sets. The first contains
the dihedral bond angles θ1, φ1, ..., θN , φN along the backbone. Into the second set we
place everything else from hydrogen bonding, torsion angle energies to rotations of
individual side chains. The first set contains the conformational degrees of freedom
and the second set the internal degrees of freedom (which allow typical free energy
changes on the order of kB T ). The energy landscape represents the 2N

conformational degrees of freedom. Each configuration is represented by a point on
the conformation space such that similar conformations are nearby.

The roughness of an energy landscape may be quantified by the presence of structural
hierarchy. Within a closed contour of constant elevation, there exist several closed
contours of lower elevation, within each of which are more contours of lower elevation,
etc. Landscapes characterized by a hierarchy of sub-valleys within valleys are said to
be rugged; trivially hierarchical landscapes, in which each closed contour contains not
multiple but a single closed contour of lower elevation, are called smooth.
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Conformations and Energy Landscapes II

The conformational energy landscape of a polymer is determined by self-avoidance. To
pass to a conformationally near but topologically distant conformation, the polymer
must swell and recollapse, overcoming a large energy barrier. A hierarchy of valleys
makes the ground state conformation only marginally lower in energy than
quasi-degenerate local minima, which act as energetic traps. Further, if the polymer is
composed of serval different monomers, as for example in a protein, additional
constraints arise due to frustration, the inability of chain segments to cooperatively
align. Together, these suggest that the conformational landscape of a typical sequence
is typically rugged.

We start off with the random energy model (REM) [24–27] for the density of states of
a heteropolymer. This model aims to describe differences between the energy spectrum
of randomly generated sequences, which are unable to fold, and the energy spectrum
of the particular set of sequences that fold to a unique, stable, native conformation.

The random heteropolymer (RHP) can be described by the Hamiltonian

HRHP({si}, {Ri}, ) =
∑
i<j

ε(si , sj )∆(|Ri − Rj |) . (182)
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Conformations and Energy Landscapes III

Here i counts the monomers (residues) along the chain, si ∈ {1, ..., p} is the species of
monomer and Ri is the position of monomer i (see figure 33). Thus p = 1 results in a
homopolymer, p = 2 into a co-polymer. The special limit p →∞ stands for a
continuous distribution of interaction energies.

3

1

3

3

2
1

Hetropolymer with q=3

Figure 33: Part of a heteropolymer conformation with q = 3.
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Conformations and Energy Landscapes IV

It is understood that the connectivity requirement is met.

∆(r) includes the excluded volume effects and is assumed to vanish at larger distances.

We now consider a macroscopic system with energy E given by the sum of many
microscopic energetic terms ε. If individual terms are considered to be statistically
independent we can use the central limit theorem to obtain the energy distribution of
the system P(E)

P(E) =
1

√
2πd

exp
(
−

(E − 〈E〉)2

2d2

)
, (183)

where d2 = zNs2 with z being the mean number of contacts per monomer and s2

being the energetic variance of the individual contacts. 〈E〉 = Nz ε̄ is the average
energy. Note that the basic assumption that contact energies are uncorrelated
effectively ignores chain connectivity!

The density of microstates is obtained by multiplication of P(E) by the total number
of microstates. Here, with energy given by the sum of individual contacts, the density
of states is given by
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n(E) = γN P(E) = γN 1

s
√
2πNz

exp
(
−

(E − Nz ε̄)2

2Nzs2

)
, (184)

where γ is the average number of conformations per monomer taking excluded volume
into consideration. This implies that the large majority of conformations will have
energy between Nz ε̄− s

√
Nz and Nz ε̄+ s

√
Nz. Further, there exists a critical energy

value Eg , obtained from the condition n(Eg ) = 1

Eg = Nz ε̄− Ns
√

2z ln γ = 〈E〉 − σE

√
2S0 (185)

terms proportional to lnN were discarded from the above expression as they are small
compared to terms proportional to N for large N and S0 = N ln γ is the conformational
entropy of the chain. Below this point the gaps in the spectrum are too large for the
chain to change its conformation in the process of thermal fluctuation.

Using eq. 184 we have that the entropy is given by

S(E) = ln(n(E)) = N ln γ − ln(s
√
2πNz)−

(E − Nz ε̄)2

2Nzs2
(186)

and
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T (E) =
1

dS/dE
= −

Nzs2

E − Nz ε̄
. (187)

The corresponding critical temperature is given by

Tg = T (Eg ) = −
Nzs2

Ec − Nz ε̄
= s

√
Nz

2N ln γ
=

s
√
2S0

. (188)

Below Tg the chain will behave like a glass, freezing in one of many local minima in
its energy surface and never reaching thermal equilibrium. As the energy of the native
conformation (the lowest energy in the spectrum), EN , for a sequence taken at
random is expected to be close to Eg , it follows that the native conformation of such a
sequence would be thermodynamically stable only at a temperature close to Tg and so
would not be able to fold in a reasonable time.
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metastable

stable

Figure 34: Energy landscape
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Helix-Coil Transition I

The α-helix is the most abundant helical conformation found in globular proteins. In
the α-helix the polypeptide folds by twisting into a right-handed screw, so that all the
amino acids can form hydrogen bonds with each other. The helix has maximal
intra-chain hydrogen bonding. This high amount of hydrogen bonding stabilizes the
structure so that it forms a very strong rod-like structure. The amino group of each
AA residue is hydrogen bonded to the carboxyl group of the 4th following AA residue,
which is on an adjacent turn of the helix.
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Figure 35: Helical structure found in polypeptides. To better identify the helical structure the
right picture shows a cartoon of the helix.
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Helix-Coil Transition III

Along the axis of the helix, it rises 0.15 nm per AA residue, and there are 3.6
residues/turn of the helix. This means, that AA residues spaced 4 apart in the linear
chain are quite close to one another in the α-helix. The screw-sense of any helix can
be RH or LH, but the α-helix found in proteins is always RH. The average length of an
alpha helix is about 10 residues.

What we want to consider now is that upon increasing the temperature, the helix
structure goes over into a random coil structure [? 28–30].

To describe the macromolecule in terms of helical and non-helical parts, we denote by
h a helical monomer and by c a coil monomer (see later for the analogy with the Ising
model [31]). A conformation is then characterised by a sequence of h and c, which we
denote by {h, c}. An example for such a sequence is

· · ·hhccchc · ·· (189)
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Helix-Coil Transition IV

Helix                             Coil 

Helix       Coil        Helix 
h h h h c c c c h h h h 

Figure 36: Mapping of the helix-coil transition onto a sequence of symbols
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Helix-Coil Transition V

Since there are N monomers, we have 2N states. To be able to write down a partition
function, we assume that the energies of the h- and the c-sequence are independent
and that they only depend on the length of the corresponding sequence. Then we can
write down individual statistical weights

ui = exp{−βEi (c)} (190)

for the c-sequence with i coil-like connected monomers. Likewise for the helical
sequence

vi = exp{−βEi (h)} . (191)

Here we have implicitly assumed that the energy is independent of the position within
the chain and independent of the neighbouring sequences! Also self-avoidance has
been ignored, since we do not take into account that monomers may be linearly
located far apart but may get in contact with each spatially. Given all these
assumptions we write down the partition function
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ZN =
∑
{h,c}

e−βE({h,c}) (192)

=
∑
i,j

∏
i,j

ui vj . (193)

Everything hinges now on the distribution of the h- and the c-sequences. Let us write
for the sequence {h, c}:

i0, j1, i1, ..., jM , iM , j0 , (194)

where i denotes the length of the c-sequence and j the length of the h-sequence. All
2M inner sequences contain at least one unit

M ≤ bN/2c (195)

with the constraint
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M∑
k=0

(ik + jk ) = N . (196)

Hence we can write

ZN =

bN/2c∑
M=0

∑
{ik ,jk}

M∏
k=0

uik vjk . (197)

From the preceding section it is clear, that if we consider very long chains (N →∞)
then the free-energy will be proportional to N, i.e., chain end effects will not play any
role

ZN ≈ qN
eff for N � 1 , (198)

where qeff is the average contribution per monomer to the free-energy.

Let us now look at the generating function
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Helix-Coil Transition VIII

Γ(x) =
∞∑

N=0

ZN x−N . (199)

This series converges for x > qeff and diverges for x → qeff

Γ(x) < ∞ x〉qeff (200)

1/Γ(x) = 0 x = qeff . (201)

Hence the partition function is the largest root of eq 201. So, let us look at the Γ in
more detail
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Γ(x) =
∞∑

N=0

x−N
bN/2c∑
M=0

∑
{ik ,jk}

M∏
k=0

uik vjk (202)

=
∞∑

M=0

∞∑
N=2M

∑
{ik ,jk}

M∏
k=0

uik x−ik vjk x−jk (203)

=
∞∑

M=0

∞∑
i0=0

ui0

x i0

∞∑
j0=0

vj0

x j0

M∏
k=1

∞∑
ik =0

uik

x ik

∞∑
jk =0

vjk

x jk
. (204)

The sums over ik and jk do not depend on k any more. Only the ends can have a
different weight. For k ≥ 1 we can define

U(x) ≡
∞∑

i=1

ui x
−i (205)

V (x) ≡
∞∑

j=1

vj x
−j (206)

135 / 200



Helix-Coil Transition X

which converge in qeff < x <∞, since Γ(x) converges. With this we have

Γ(x) = U0V0

∞∑
k=0

(UV )k (207)

= U0V0
1

1− UV
. (208)

Γ(x),U(x) and V (x) are positive and monotone decreasing functions of x since the
statistical weights are positive and real. It follows that 1/Γ(x) is a continuous and
monotonically decreasing function in qeff < x <∞, since Γ(x) and 1/Γ(x) = 0 for
x = qeff . Since

U0V0|x=qeff 6= 0 (209)

we have

U(qeff)V (qeff) = 1 . (210)
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In a chain composed of six units only four contribute with hydrogen bonds to the
helical structure. In general, we have that for j consecutive helical states only (j − 2)

are formed by hydrogen bonds. Hence we need three states in our model:

a coil-like state

a helical state with hydrogen bond.

a helical state without hydrogen bond,

Corresponding to these three states we need statistical weights

coil − u (211)

h with h− bond − w (212)

h without h− bond − v (213)

If we take as a reference the coil state then we have the weights
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Helix-Coil Transition XII

coil − u/u = 1 (214)

helix with h− bond − w/u = s (215)

helix without h− bond − v/u = σ1/2 (216)

For the sequences of h and c we get

c − sequence ui = ui 1
h − with h− bond vj = v2w j−2 vj = σs j−2

h − without h− bond v1 = v v1 = σ1/2
(217)

From the experimental point of view one can determine the relative number of
unbroken hydrogen bonds θ (which is proportional to the number of w statistical
weights).
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Θ

T
Figure 37: Dependence of the order parameter on the temperature for the helix-coil transition
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With the above defined statistical weights and using eq 193 we have

ZN =
∑

ij

∏
ij

ui vj =
∑

ij

∏
ij

σs j−2 (218)

We obtain θ by taking the derivative with respect to s

θ =
1

N − 2
∂ lnZN

∂ ln s
. (219)

Since ZN ∝ qN
eff for N � 1 we find

θ =
1
N

∂ ln qN
eff

∂ ln s
=

s

qeff

∂qeff

∂s
. (220)

We determine qeff from eq 210

q3eff − q2eff(u + w) + qeff(wu − uv) + uvw + v2u = 0 (221)

with the solution
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qeff =
1
2

{
w + u +

√
(w − u)2 + 4uv2/w

}
(222)

and for θ

θ =
1
2

{
1 +

s − 1√
(s − 1)2 + 4σs

}
. (223)

In figure 37 is shown the qualitative result for the order parameter θ. A comparison to
the experimental findings is shown in figure 38.

141 / 200



Helix-Coil Transition XVI

Figure 38: Experimental results for the helix-coil transition
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We can make contact with the Ising model by setting

σ = e−4J/kB T (224)

s = e2H/kB T (225)

to find

θ =
1
2

1 +
sinh(H/kB T )√

sinh2(H/kB T ) + e−4J/kB T

 . (226)

Hence the average magnetization per spin 〈m〉 can be looked upon as the helical
fraction

〈m〉 = 2θ − 1 =
sinh(H/kB T )√

sinh2(H/kB T ) + e−4J/kB T
. (227)

In this context the Ising model appears as a special case of the α-helix model.
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DNA Models I

DNA melting refers to the dissociation of the two strands of the double helix by an
increase of temperature. The melting is thus a highly cooperative thermal disruption
of the hydrogen bonds between complementary bases in the double helix. At the
equilibrium melting temperature half of the bonds are disrupted. Dissociation can
occur also through a change of pH.

The melting or denaturation of DNA is a thermodynamic reversible phase transition.
The order of the transition is still debated due to the effect to the entropy of loops
embedded in the chain. Existing experimental studies of the thermal denaturation of
DNA yield sharp steps in the melting curve suggesting, that the melting transition is
first order. Here we present the Poland-Scheraga-model [? ] and the zipper-model [?
].

The Poland-Scheraga-model considers the DNA molecule as composed of an
alternating sequence of bound and denaturated states as depicted in figure 39.
Consider two strands, made of up monomers, each representing one persistence length
of a single strand. Typically a bound state is energetically favored over an unbound
one, while a denaturated segment or loop is entropically favored over a bound one.
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Figure 39: Poland-Scheraga-model of the DNA-melting transition

Within the Poland-Scheraga-model the segments that compose the chain are assumed
to be non-interacting with one another, i.e. excluded volume effects are not taken into
account. This assumption considerably simplifies the theoretical treatment and
enables one to calculate the resulting free energy.

Analogous to the α-helix model we can define statistical weights

coil sequence in a loop δ(i)σ

coil sequence at the end of the chain 1
helix sequence s j

(228)

The statistical weight of a bound sequence of length k is

s j = exp(−jE/kB T ) . (229)
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On the other hand the statistical weight of a denaturated sequence of length i is given
by the change in entropy due to the added configurations arising from a loop of length
2i . For large i the free energy will be proportional to the entropy of a closed loop S(i)

S(i)/kB = ln δ(i) = ai − c ln i + b , (230)

which is the typical form of the entropy for polymer chains with two free ends and
excluded volume effects. It follows

δ(i) = eS(i)/kB ∝ i−c ≈ κi/ic , (231)

where s is a non-universal constant, and the exponent c is determined by the
properties of the loop configurations. For simplicity, we set a = 1.

The model is most easily studied within the grand canonical ensemble where the total
chain length N is allowed to fluctuate. The grand canonical partition function is given
by

Z =
∞∑

N=0

G(N)xN =
V0(x)UN (x)

1− U(x)V (x)
, (232)
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with

U(x) =
∞∑

i=1

κi

ic
x i , V (x) =

∞∑
j=1

s j x j (233)

and V0(x) = 1 + V (x) , UL(x) = 1 + U(x). In the thermodynamic limit, L→∞

lnZ ' N ln x1. (234)

Here x1 is the value of the fugacity in the limit 〈N〉 → ∞. This is the lowest value of
the fugacity for which the partition function diverges, i.e., for which

U(x1)V (x1) = 1 . (235)

It is thus clear that the nature of the denaturation transition is determined by the
dependence of x1 on s. The transition takes place when x1 reaches 1/κ. Its nature is
determined by the behaviour of U(x) in the vicinity of xc. This is controlled in turn by
the value of the exponent c.

We can again define an order parameter θ to be

147 / 200



DNA Models V

θ =
1

1 + σs
x1

∑∞
i=1 x−i

1 i1−c
. (236)

From the above we get the determining equation for x1

∞∑
i=1

x−i
1 i−c =

x1 − s

σs
. (237)

Since x1(s) ≥ 1 we have a lower bound x1(sc ) = 1 with

sc =
1

1 + σζ(c)
, (238)

with ζ(c) being the Riemann Zeta-function.

We can distinguish three regimes:

1 For c ≤ 1, U(xc ) diverges, so that x1 is an analytic function of s and no phase
transition takes place.
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2 For 1 < c ≤ 2, U(xc ) converges but its derivative diverges at x1 = xc . Thus the
transition is continuous.

3 For c〉2, U(z) and its derivative converge at x1 = xc and the transition is first
order.

The value of the exponent c can be obtained by enumerating random walks, which
return to the origin, so that c = dν. For ideal random walks this yields c = d/2. Thus
there is no transition at d ≤ 2, a continuous transition for 2 < d ≤ 4 and a first order
transition only for d〉4.

On the other hand, for self-avoiding random walks the excluded volume interaction
modifies the exponent to c = 3/2 for d = 2 and c ' 9/5 for d = 3. The transition is
thus sharper, but still continuous, in three dimensions.
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Zipper Model of DNA Melting

Figure 40: Kittel zipper model of the DNA-melting transition
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Kittels zipper-model [? ] describes the breaking up of the double helix starting from
the end. The zipper is comprised of N parallel bonds. The bonds can only break up
successively starting from one end of the chain (see figure 40). In this model it is
assumed to be impossible to break up a bond anywhere with the chain except for the
one right next to the one that broke last.

If the bonds 1, ..., p are broken then the energy to break the p + 1 bond is ε. The last
element of the chain is considered unbreakable.

We assume, that an open bond can take on G orientations (due to rotational degrees
of freedom, G ≈ 104). To break up the first p bonds we need an energy pε, and this
will give a contribution of

G pe−pε/kB T (239)

to the partition function. Thus

ZN =
N∑

p=0

G pe−pε/kB T =
1− xN

1− x
, (240)
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with x = Ge−ε/kB T . We define as the order parameter the average number of open or
broken bonds

〈θ〉 =
∑

p

pxp/
∑

xp = x
d

dx
lnZN (241)

=
NxN

xN − 1
−

x

x − 1
(242)

which is shown in figure 41. We can expand the order parameter in the neighbourhood
of the critical point xc = 1 using

ε ≡ |x − xc | ∝ |T − Tc | � 1 . (243)

With this

〈θ〉 = G
dε

dG

d

dε
lnZN (244)

=
1
2

N(1 +
1
6

Nε−
1

360
N3ε3 + ...) . (245)
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DNA Models X

For T = Tc we have

1
N

d〈θ〉
dε

=
1
12

N −
1

240
N3ε2 (246)

for N � 1 and ε� 1. At the critical point the order parameter reaches a value

〈θ〉
N

=
1
2

. (247)

The slope diverges in the thermodynamics limit. The critical temperature is given by

Tc =
ε

kB
lnG . (248)

For G〉1 we find that the critical temperature is finite.
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DNA Models XI
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Figure 41: Kittel zipper-model of the DNA-melting transition

Let us then look at the entropy

S = T
∂

∂T
lnZ + lnZ (249)

=

(
x ln

G

x

)
∂

∂x
Z + lnZ (250)

= 〈θ〉 ln
G

x
+ ln(xN − 1)− ln(x − 1) . (251)

Hence

S ≈ 〈θ〉 lnG (252)

for Nε� 1. The entropy is proportional to the order parameter.

For the specific heat we find

C = T
dS

dT
(253)

in the neighbourhood of Tc

C ≈ kB (lnG)2
d〈θ〉
dε

(254)

≈ NkB (lnG)2
[
1
12

N −
1

240
N3ε2 + ...

]
. (255)

Thus, the specific heat per bond diverges in the thermodynamic limit.

Example (Peyrard-Bishop model of DNA)
The melting of DNA can be approached from different point of view. We start from
the Hamiltonian [39]

H =
N∑

i=1

{
J

2
(xi + 1− xi )

2 + V (xi ))} (256)

where the variables xi can take on real values representing the difference of the actual
distance between two bases in base pair i and their equilibrium distance. The
harmonic interaction represents the rigidity of the molecule due to in part to the
stacking interaction between consecutive base pairs.

The potential V (xi ) = B(e−Rxi − 1)2 is a Morse potential with the parameters B and
R. It describes the hydrogen bonds between two bases in a base pair. B gives the
strength of the potential and R is the width of attracting well of the potential.
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Chromatin I

A protein aggregate together with its wrapped DNA comprises a nucleosome core
particle with a radius of about 5nm and a height of about 6nm. With its linker DNA it
is the fundamental chromatin repeating unit. It carries a large electrostatic charge
[32]. Whereas the structure of the core particle has been resolved up to high atomic
resolution [33], there is still considerable controversy about the nature of the
higher-order structures to which they give rise. When stretched the chromatin string
appears to look like beads-on-a-string in electron micrographs.

The beads-on-a-string structure can be seen clearly when chromatin is exposed to very
low salt concentrations, and is known as the 10-nm-fiber, since the diameter of the
core particle is about 10nm. With increasing salt concentration, i.e. heading towards
physiological conditions (c ≈100mM), this fiber appears to thicken, attaining a
diameter of 30nm. The absence of the extra linker histones (H1 or H5) leads to more
open structures; so it is surmised that the linker histones act near the entry-exit point
of the DNA; they carry an overall positive charge and bind the two strands together
leading to a stem formation [34–36]. Increasing the salt concentration decreases the
entry-exit angle α of the stem as it reduces the electrostatic repulsion between two
strands.
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Chromatin II

Figure 42: Nucleosome
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Chromatin III

Figure 43: Histone H1
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Models for the 30nm fibre: A Basic Model I

Figure 44: Image taken from C. L. Woodcock, S. A. Grigoryev, R. A. Horowitz, and N.
Whitaker, Proc. Natl. Acad. Sci. USA 90:9021-9025.
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Models for the 30nm fibre: A Basic Model II

Following Woodcock [37] et al. and Schiessel et al. [38] we consider four consecutive
nucleosomes (cf. Figures 45 and 46): N0,N1,N2 and N3 ε R3 within the chain. N3 is a
function of N0, ..,N2 by fulfilling the following conditions:

i ^ ((N0 − N1), (N2 − N1)) = α;

ii ‖N2 − N1‖ = b2, ‖N0 − N1‖ = b1, ‖N3 − N2‖ = b3, with b1, ..., b3 = b;

iii

P := {r ε R3 | ∃ λ, µ ε R, such that r = N1 + λ(N0 − N1) + µ(N2 − N1)}

P′ := {r ε R3 | ∃λ′, µ′ ε R, such that r = N1 + λ′(N2 − N1) + µ′(N3 − N1)}

^(P,P′) = β.
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Models for the 30nm fibre: A Basic Model III

Figure 45: Two nucleosomes from a crystal structure database motivating the basic definitions
of the two-angle model.
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Models for the 30nm fibre: A Basic Model IV

Figure 46: Basic definition of the two-angle model.
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Models for the 30nm fibre: A Basic Model V

Figure 47: Two-angle model chain.
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Models for the 30nm fibre: A Basic Model VI

Figure 48: The solenoid and crossed-linker structures are most important. The dotted line is
the function ζ(α) which represents the border of the forbidden region due to excluded volume.
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A Second Model I

Basic definitions of the extended two-angle model

the entry-exit angle α

the linker length b

the rotational angle β

the pitch d
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A Second Model II

Figure 49: Nucleosome from a crystal structure database motivating to include the pitch in
the basic definitions of the two-angle model.
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A Second Model III

Figure 50: Phase diagram resulting from the model
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Effect of the Missing H1 Histone I
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Effect of the Missing H1 Histone II
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Comparison to 5C Data I
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Comparison to 5C Data II

Figure 51: Definition of persistence length (and problems associated with it)
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Comparison to 5C Data III

Figure 52: Contact Statistics
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Chromosomes I

The last section was dedicated to the derivation of a general formula for the mean
square displacement between two arbitrary beads of the chain where each bead may
interact with any other via harmonic potential. This quantity turned out only to
depend on the matrix K , or more accurately speaking, on its inverse. The matrix K

contains all information about the interactions. Now we want to specify this matrix.
Our model assumes the chromatin fibre to have a random walk backbone, meaning
that κij = κ with |i − j | = 1. Furthermore the chromatin forms loops whose size and
positions are randomly distributed along the chain. On a more general footing we can
restrict the possible loop sizes ` to a certain range [l1, l2]. Within this range all loops
are chosen randomly by setting:

κij =

{
κ with probability P
0 with probability 1− P

, if l1 ≤ |i − j | ≤ l2

κij = 0 otherwise

Note that we can set κ = 1 as it only scales the mean square displacement in eq. (??).
Thus our model has two adjustable parameters, namely the chain length N and the
probability P.
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Chromosomes II

The resulting matrices K represent an ensemble of diagonally dominated band random
matrices and each matrix of this ensemble represents a loop configuration. This
ensemble of random matrices has been investigated recently [? ]. We are interested in
the ensemble average of the mean square displacement, i.e. in the quantity〈

r2IJ
〉

=
〈〈

r2IJ
〉
thermal

〉
loops

= 3
(
〈σJJ〉loops + 〈σII 〉loops − 2 〈σIJ〉loops

)
.

This average is a quenched average and is equivalent to averaging over the ensemble of
random matrices given by the above constraints. In sec. 181 we also consider the case
of the annealed ensemble and give an explanation why we use the quenched one here.

As our model already assumes that the chromatin fibre is translational invariant (as we
do not take into account genomic content), we are only interested in the mean square
displacement

〈
R2

n

〉
for two beads separated by n = |i − j |.

The average over the ensemble of random matrices cannot be performed analytically,
so we have to use a representative subset of the ensemble and numerically calculate
the inverse matrix and thereby the mean square displacement.

As noted earlier, our polymer model makes use of coarse-graining, since it is
impossible to model such a long fibre in detail. Restrictions are given by computing
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Chromosomes III

time, which basically depends on the size of the matrix K . For our calculations we
chose a matrix size of N = 1000 as a good compromise between computing time and
not too coarse graining. Using a coarse-graining approach implies that we neglect
details on a scale below the effective segment length being 150 kb in the following
figures. Therefore we cannot resolve those loops that have been investigated in some
gene-expression systems like the β-globin locus. As we are interested in large scale
chromatin organization, it is justified to neglect these loops as they have no effect for
the levelling-off at large genomic distances, but only lead to a rescaling of the effective
Kuhn length.

The first point of interest is which loops are necessary for the observed experimental
behaviour. Do small loops (in the order of 100 kb to 1 Mb) already lead to the
levelling-off, or are loops on all scales up to 80 Mb needed? Restricting the loop sizes
to a range ` ∈ [1, s] only leads to a rescaling of the effective segment length, we still
have

〈
R2

n

〉
∼ n (fig. 53a). In fig. 53b) we analyzed the ensemble where only large

loops are allowed. Obviously, large loops are responsible for forcing the collapse of the
chain, but the overall behaviour of the mean square physical distance does not fit the
experimental data. Therefore loops on all scales are needed to obtain the levelling-off
observed in experiment.
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Chromosomes IV
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Figure 53: Mean square displacement between two chain segments in relation to their contour
length for the Random Loop Model for different allowed loop sizes. The chain length is always
N = 1000 In figure a) only loops smaller than a certain size s are allowed. The basic scaling
behaviour is still

〈
R2

n

〉
∼ n with a changed effective contour length compared to the free

random walk. For this plot P was chosen that the average number of loops per configuration
is 100. Figure b) is for large loops where only loops of sizes ` in a range [N − s,N] are allowed.
While large loops seem to be responsible for the collapse of the chain, they alone cannot
explain the experimental data. As in a) P was chosen that the mean number of loops per
configuration is 100. Figure c) shows the results for the situation where loops of all sizes are
allowed. The levelling-off to

〈
R2

n

〉
∼ O(1) can already be achieved by a small number of loops
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Chromosomes V

The characteristic features of the mean square displacement allowing loops on all
scales can be seen in fig. 53c). At short contour lengths the mean square displacement
grows similar to a random walk, but soon a levelling-off can be observed due to the
attractive long-range interactions which is fairly ∼ O(1). While the contour length
approaches N, the mean square displacement again rises to a random walk like
behaviour. This is a chain end effect which is not of interest to us, as experiments
only measure intra-chain distances. It is due to the construction of the loops, as the
probability for having a loop with a larger size becomes increasingly small.

Thus, adding long-range interactions forcing the polymer to form loops yields
completely different traits than a simple random walk or self-avoiding walk model.
Note that the probabilities P are chosen very small, meaning that a few loops suffice
to obtain this levelling-off. The number of independent randomly choosen entries κij is
C = (N − 1)(N − 2)/2 for a N × N-matrix and therefore the average number of loops
per configuration is given by C · P. With P = 4× 10−5 and N = 1000 one has an
average of about 20 loops.
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Chromosomes VI
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Chromosomes VII

In fig. 54 the model is compared to the experimental data for different values of P.
Here one has to introduce two new scaling parameters, the segment length in physical
units (e.g. nm) and the segment length in base pairs. The data is shown for a
segment length of 300 nm and 150 kb. The latter is the size of the flourescent
markers used in experiments, therefore it does not make any sense to model on a more
detailed scale. As mentioned above, using this coarse-graining approach all details on
length scales smaller than 150 kb are neglected. The model can quite well explain the
levelling-off at genomic distances above a few mega-base pairs as well as the rise at
small genomic distances. As we have shown that on small genomic distances we have
a globular-state-like behaviour [? ], this random-walk-based model does not yield
perfect results here.

In a recent publication [? ] we already mentioned that plotting
〈
R2

n

〉
versus n is not a

very sensitive method to check for the correctness of a model. Looking at the
cumulant relation between higher-order moments,

c4 =

〈
R4〉
〈R2〉2

(257)

gives much stronger evidence, as this expression is related to the distribution of the
distances and not only its average value. Furthermore it has the advantage that the
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Chromosomes VIII

physical length scale divides out. Eq. (257) can be easily evaluated for a Gaussian
Chain, where cRW4 = 5/3. To obtain the value of the cumulant relation for a
self-avoiding walk one has to use the expression for the distance probability density
obtained by scaling arguments [? ? ],

PSAW(RN ) = ARµ+2
N exp

(
−D R

1
1−ν

N

)
, µ = 0.28 (258)

Numerical integration gives cSAW4 ≈ 1.506, so both RW and SAW yield a constant
expression. Fig. 55 shows that this constant has a value significantly below the
fluctuations of the data. Here our model is in better agreement with experiments. We
should point out here the importance of averaging over the disorder of loops. The
cumulant expression c4 only averaged over the thermal ensemble given by
equations (??) and (??) is the same as for a pure random walk, namely 5/3. It is the
average over the loop configurations that changes this behaviour, bringing it in better
agreement with the data.
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Chromosomes IX
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Annealed vs. quenched average I

In systems with disorder one has to perform averages both over a set of statistical
variables and over a set of random variables representing the disorder [? ]. In the case
of the Random Loop Model the partition sum Z depends on the statistical variables
x1, . . . , xN and a set of random variables representing the disorder {κij} with
|i − j | > 1. Above we have performed the average first over the statistical variables,
while the average over the disorder has been taken over the quantity

〈
rij

〉2. This
corresponds to a process of quenched averaging. Using this method we assume that
the time the cell needs to go into a new disorder configuration is much longer than the
time needed for the cell to come into thermal equilibrium, τeq � τdis. At least to our
knowledge, such time scales are not known inside the cell nucleus. Time evolution
measurements cannot be performed on a cell using FISH markers as the cell has to be
fixated before applying imaging techniques. Different configurations can only be
observed by looking at different cells. It seems to us more reasonable to use a
quenched type of average for comparison to biological data, as the loops are functional
complexes which have to persist a while in order to properly fulfill their tasks.

Nevertheless, it is interesting to consider the other case, the annealed ensemble. This
type of average should be applied if τdis � τeq. The annealed average of the partition
sum can be written as

〈Z〉ann =
∑
{κij}

Z
(
{xk}, {κij}

)
p
(
{κij}

)
, (259)
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Annealed vs. quenched average II

where the sum is over all possible configurations of disorder, and p is the probability of
one such configuration. We restrict our calculation to the case that loops of all sizes
are allowed and that the spring constant is κ for adjacent beads as well as for loops.
Assuming that the κij are i.i.d. Bernoulli as before, the average over the disorder can
be carried out exactly,

〈Z〉ann =

∫
dx1 . . . dxN exp(−UGaussian)

×
∏

i<j−1

[
P
(

e−
1
2κ‖xi−xj‖2 − 1

)
+ 1
]

.

Introducing the effective potential

Ueff =
1
2
κ

N−1∑
i=0

r2i,i+1 −
∑
|i−j|>1

log
[
1 + P

(
e−

1
2κr2ij − 1

)]
,

where rij =‖ xi − xj ‖2, we can rewrite the partition sum as

〈Z〉ann =

∫ ∫
dx1 . . . dxN exp(−Ueff) (260)
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Annealed vs. quenched average III

The effective potential has two parts: Adjacent beads with |i − j | = 1 keep their
attractive harmonic potential, while all non-adjacent beads interact via a pairwise
attractive potential V (r). This potential is characterized by a minimum at r = 0,
while for large r it reaches a plateau at V (r →∞) = − log(1− P). In a low
temperature approximation, a series expansion around r = 0 up to second order gives

V (r) =
1
2
Pκr2 (261)

– a harmonic potential with effective spring constant Pκ.

The partition sum in (260) cannot be evaluated analytically and therefore we do not
obtain an expression for the mean square displacement in the annealed case. One
could obtain results using extensive and time-consuming MD or MC simulations. It
will be left for future investigations.

183 / 200



Limiting cases without disorder I

In most cases one cannot solve the model presented above analytically. Using the
quenched ensemble one cannot calculate the average over the disorder, while using the
annealed ensemble one cannot obtain the partition sum after having performed the
disorder average. Therefore we calculated sample averages for the quenched case
above. There are two special cases where the model can be solved exactly. These are
the limiting cases where no disorder is present. P = 0 is the situation of a normal
Gaussian Chain with spring constant κ. It is well known that the mean square distance
between two beads separated by n monomers is given by

〈
R2

n

〉
= 3

κ
n. The other limit,

P = 1, corresponds to a fully connected network of beads. Assuming that all beads
interact with spring constant κ, we can solve this problem analytically. Here we
basically do not deal with a linear chain any more. The interaction matrix K = (kij )i,j

in this case writes

kij =

{
Nκ for i = j

−κ for i 6= j
(262)

By an easy calculation one can show that the inverse matrix is given by

σij =


2

(N+1)κ
for i = j

1
(N+1)κ

for i 6= j
(263)
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Limiting cases without disorder II

Recall our definition of the chain at the beginning of sec. ??: Although we have an
N × N-matrix our chain has N + 1 beads, as we set x0 ≡ 0. Inserting into eq. (??)
yields 〈

R2
n

〉
≡
〈

r2ij

〉
=

3
(N + 1)κ/2

(264)

Within this system two beads are interacting with an effective harmonic potential with
κeff = (N + 1)κ/2.

Of major interest is the case where P = 1, but where adjacent beads interact with a
different spring constant than loops, i.e. κij = κ for |i − j | = 1 and κij = κ̂ for
|i − j | > 1. We were not able to solve this case analytically. One might take this
system as a model for the low-temperature limit of the annealed case in eq. (261)
where κ is replaced by an effective interaction κ̂ = Pκ. On a more general footing this
case might also be regarded as a model for a system where the random attraction with
probability P and loop spring constant κ has been replaced by an average attraction
with probability P = 1 and loop spring constant Pκ. It is clear a priori that such a
potential will lead to a collapse of the chain, as all beads are interconnected. In fig. 56
we chose κ̂ = κ = 1 and P = 4× 10−5 as the reference curve. In comparison with the
case of average attraction (P = 1, κ = 1, κ̂ = P) the levelling-off is much less
pronounced. Of course it is possible to come into close agreement with the reference
curve by choosing another interaction constant. For our reference curve one would
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Limiting cases without disorder III

have to lower κ̂ by about one order of magnitude, corresponding to P ∼ 2× 10−6

(< 1 loop per chain!). Although one could fit the data with these averaged attraction
potential, we see no biological reason for such a potential to exist in the cell.
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Limiting cases without disorder IV
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Excercises I

Exercise 1: Find all possible random walks without self-intersections on the square
lattice for length N=1,2,3, . . . and compute their mean square
displacement.

Exercise 2: Write a program to generate configurations self-avoiding lattice polymers
using the reptation and pivot algorithms. Calculate mean-square
end-to-end lengths and radii of gyration as function of the number of
chain segments. Compare your results with the mean-field predictions.

Exercise 3: Random walk Metropolis updating
Assume that pxy = g(y − x) for some arbitrary density. Clearly y is choose
as y = x + z with z drawn from g , i.e. the proposed moves have the
random walk character. Often, g is taken to uniform or gaussian. Use this
idea to generate conformations of a linear chain in continuum. Compute
the auto-correlation function for the radius of gyration.

Exercise 4: Independence Sampler
An interesting choice for p is pxy = g(y), i.e., the new candidate is drawn
independent of the current state. Repeat the above exercise and compare
the auto-correlation.
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Excercises II

Exercise 5: A nucleosome is has 146 bp of DNA and wraps around a proteins making
1.75 helical turns with helix radius of 5 nm. The pitch is 3 nm. Compute
the bending free energy of the DNA in units of kB T .

Exercise 6: Peyrard-Bishop model of DNA
The melting of DNA can be approached from different point of view. We
start from the Hamiltonian [39]

H =
N∑

i=1

{
J

2
(xi + 1− xi )

2 + V (xi ))} (265)

where the variables xi can take on real values representing the difference of
the actual distance between two bases in base pair i and their equilibrium
distance. The harmonic interaction represents the rigidity of the molecule
due to in part to the stacking interaction between consecutive base pairs.
The potential V (xi ) = B(e−Rxi − 1)2 is a Morse potential with the
parameters B and R. It describes the hydrogen bonds between two bases
in a base pair. B gives the strength of the potential and R is the width of
attracting well of the potential.
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Excercises III

Exercise 7: Polyelectrolytes
The perhaps simplest model for charged flexible polymers or
polyelectrolytes is obtained using the Flory ansatz for the free energy

βF =
R2

Nb2
+

kN2q2

eR

where the interaction term is basically giving an electrostatic potential
energy k2/R to each of the N2 interactions between the charged
monomers, and is up to a numerical constant the electrostatic energy of a
sphere of radius R with charge Nq dispersed through it. How does the
radius R scale with N for this case?
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