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Introduction



Introduction I

Figure 1: An example of a two-dimensional network in a cell taken from [1]. This figure shows
an example of a two-dimensional network in a cell. Shown is the membrane-associated
cytoskeleton of the human erythrocyte. The image showes that there is a network of spectrin
tetramers attached to cytoplasmic side of plasma membrane about midway along their length
by the protein ankyrin. Each spectrin tetramer has a 200 nm contour length with an
end-to-end distance of < Re > 70 nm.
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Introduction II

Figure 2: Image taken from wikipedia (https://en.wikipedia.org/wiki/Membrane_models).
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Introduction III

Figure 3: A micell and a lipid bi-layer model.
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Introduction IV
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Figure 4: The figure shows 128 DMPC lipids and 3655 water molecules. 1 ns of constant area
at 0.596nm2. Downloaded and taken from Peter Tielemans website
http://www.ucalgary.ca/ tieleman/download.html.
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Introduction V
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Figure 5: Phase diagram for the DMPC as a function of lipid volume fraction φ. Downloaded
and taken from Peter Tielemans website http://www.ucalgary.ca/ tieleman/download.html.
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Introduction VI
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Figure 6: Translocation of a macromolecule through a membrane pore. Image taken from [2]
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Introduction VII

Possible membrane models include:

fixed triangulation

dynamic triangulation (liquid membranes)

all-atom model

coarse-grained polymer models

lattice models with placettes

lattice Potts-model-like
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Differential geometry of surfaces I

We shall first be concerned with the intrinsic and extrinsic geometric properties of
surfaces, such as the curvature.

For simplicity we consider a surface S which is the graph of a function with
continuous second derivatives.

This may be of the form z = f (x , y) or parameterized f (s, t), g(s, t), h(s, t) for a
two-dimensional surface embedded in three-dimensional space.

Let n denote a unit normal vector to S at a point p choosen such that the normal
vector is pointing along the z-axis.

Now slice S by planes containing n and consider the curvature of the resulting
curves.

The curvatures of these resulting curves are called normal curvatures at p.

The maximum normal curvature κ1 and the minimum normal curvature κ2 are
called principal curvatures.

The Gaussian curvature K(p) at any point p on S is the product of the extreme
curvatures of the curves through p cut out by normal planes (the product of the
principal curvatures).
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Differential geometry of surfaces II

The Gaussian curvature is a measure of how much "curvedness" the surface
displays. We have to be careful.

The curvature of a curve is an extrinsic geometric property, telling how it is bent
in the plane, or bent in space, whereas the Gaussian curvature is an intrinsic
geometric property: it stays the same no matter how a surface is bent, as long as
it is not distorted, neither stretched or compressed.

But the mean curvature

H =
1
2

(κ1 + κ2) (1)

is an extrinsic property of the surface.

Let us look at the monkey saddle (see als Figure 7).

f (x , y) = z = x3 − 3 ∗ x ∗ y2 . (2)
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Differential geometry of surfaces III

Figure 7: Shown is the monkey saddle and the corresponding curvatures.
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Differential geometry of surfaces IV

The Gaussian curvature of the monkey saddle is given by

K =
−36 x2 − 36 y2[

1 + (3 x2 − 3 y2)2 + 36 x2y2
]2 (3)

and the mean curvature by

H = −27
x
(
x4 − 2 x2y2 − 3 y4)

(1 + 9 x4 + 18 x2y2 + 9 y4)3/2
. (4)

The energy pert unit area proposed by Helfrich on the basis of the curvature is

fc =
k

2
(2H − c0)2 + κK (5)

where k and κ are bending rigidities and c0 is the spontaneous curvature. Thus the
free energy is

F =

∫
(fc + λ)dA + ∆p

∫
dV (6)
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Differential geometry of surfaces V

λ is the Lagrange multiplier for area inextensibility of the membrane, which has the
same dimension as surface tension.
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Membrane elasticity and bending energy I

Fluctuating membranes and surfaces are basic structural elements of biological
systems and complex fluids.

Recent theoretical work [3, 4] and experimental studies [5, 6] indicate, that these
sheetlike macromolecules should have dramatically different properties than linear
polymers.

Polymerized membranes which contain a permanently cross-linked network of
constituent molecules have a shear elasticity, giving them a large entropic bending
rigidity.
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Membrane elasticity and bending energy II
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Figure 8: Comparison of the elastic modulus for different materials

A possible approach to study the behaviour of a surface in space dimensions
D > 1 is to discretize the surface using a triangulation [7–10].

This, in a sense, connects with the network shown in Figure 1.
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Membrane elasticity and bending energy III

Thus the basic idea is to replace the complex network with a simple model where
the edges of the triangulation represent the membrane polymers (spectrin
network) and are modelled by Hookian springs with a quadratic potential.

The surface S is thus replaced by a simplical triangulation T , specified by the
number of nodes N, of links and triangles, and the X -coordinate field by the
coordinates X of the nodes (see Figure 9).
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Membrane elasticity and bending energy IV

Figure 9: Triangulation model for a surface.
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Membrane elasticity and bending energy V

Figure 10: This figure demonstrates the elementary moves which are made for dynamically
triangulated random surfaces.

The metrical fluctuations of the manifold are modeled by summing over
triangulations induced by link-flips [11–13].

The Hamiltonian is now choosen, such that the partition function is not
dominated by configurations with spikes.

In order to suppress these spikes one adds a term with extrinsic curvature.

As a function of the extrinsic curvature the model shows a crumpling phase
transition at finite rigidity of the surface [14–24].
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Membrane elasticity and bending energy VI

The partition function can be written as

ZN =

∫
dD X0

∫ N−1∏
i=1

dD Xi e
−H (7)

where the translational mode is integrated out.

The Hamiltonian H is defined as

H = β ·
N∑
〈i,j〉

(Xµ
i − Xµ

j )2

︸ ︷︷ ︸
Hg

+ λ ·
∑
4i ,4j

(1− n̂4i
· n̂4j

)

︸ ︷︷ ︸
He

− α ·
N∑

i=0

log σi︸ ︷︷ ︸
Hm

. (8)

20 / 100



Membrane elasticity and bending energy VII

The Gaussian part of the Hamiltonian Hg is a sum over the positions X in
embedding Euclidian space of all nearest neighbours nodes, i.e. all links of the
triangulation. We shall use β = 1 because of the rescaling invariance, i.e., if we
rescale the coordiantes

X → X ′ =
√
βX (9)

then the partition function is replaced by

Z ′ = β(N−1)D/2c (10)

where c is a constant independent of β. If λ and α are both zero, then the we
would obtain the average area < A > as

< A >= −
∂ lnZ

∂ lnβ
=

D

2
(N − 1)

1
β

(11)

and for the fluctuations

< A2 > − < A >2= −
∂2 lnZ

∂2 lnβ
=

D

2
(N − 1)

1
β2 . (12)
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Membrane elasticity and bending energy VIII

Hence the relative width of the distribution vanishes in the thermodynamic limit

lim
N→∞

√
< A2 > − < A >2

< A >
= lim

N→∞

1√
D
2 (N − 1)

= 0 . (13)

He is an edge extrinsic curvature term [25–32].
∑
4i ,4j

denotes a summation
over all adjacent triangles which share an edge and n̂4i

· n̂4j
is the scalar product

of the vectors normal to a triangle.

The third part of the Hamiltonian Hm is the discretization of the square root of
the metric. σi denotes the number of nearest neighbours of node i . α depends on
the measure. We will set α = D/2 for the D = 3 dimensional embedding space.
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Membrane elasticity and bending energy IX

We expect that the above model shows a phase transition at some critical value
of the coupling λ. There are several questions which we want to address: What is
the order of the transition?

If the transition is of second order, what are the exponents?

Are the exponents topology dependent?

Is the transition temperature topology dependent?

We want to look at the closed dynamically triangulated random surfaces without
self-avoidance.

As models for such surfaces we take the first two topologically closed surfaces:

The sphere and the torus (c.f. Figure 11).
The torus is specified by identifying edges of the parameter space P.
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Membrane elasticity and bending energy X

Figure 11: Shown are two examples of configurations of dynamically triangulated random
surfaces. The left picture shows a sphere and the right part a torus.
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Lattice Models I

The Potts model [33] is a generalization of the Ising model [34] and defined as follows:

Let G = Ld be a d-dimensional lattice.

Associated with each lattice site i is a spin si which can take on the values +1 or
−1.

The spins interact via an exchange coupling J. In addition, we allow for an
external field H.

The Hamiltonian reads

H = −J
∑
〈i,j〉

si sj + µH
∑

i

si . (14)

The first sum on the right-hand side of the equation runs over nearest neighbours
only.

The symbol µ denotes the magnetic moment of a spin. If the exchange constant
J is positive, the Hamiltonian is a model for ferromagnetism, i.e., the spins tend
to align parallel.

For J negative the exchange is anti ferromagnetic and the spins tend to align
antiparallel. In what follows we assume a ferromagnetic interaction J > 0.
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Membranes and Folding I

Finite size scaling assumes, that there is only one relevant linear length scale,
which is compared to the correlation length.
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Membranes and Folding II

To apply finite size scaling to the crumpling transition of dynamically
triangulated random surfaces (DTRS) one must therefore assume a single
length scale determined by the number of nodes N and the internal dimension d

of the surface

L ∝ N1/d . (15)

This internal dimension d also depends on the external properties of the surface
and λ [35].

So let us first look at the specific heat.

If the transition is of second order we would have

C(λ, L) = Lα/ν Ĉ
[
(λ− λc )L−ν

]
(16)

where Ĉ is a scaling function, which depends on how one implements the surface.

At the critical λ the scaling function is regular and the scaling hypotheses leads to

C max
N ∝ ANα/νd + . . . (17)

for the scaling of the peak in the specific heat.
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Membranes and Folding III

If we assume a first order transition then C max
N diverges as Ld because of the

δ-distribution of C∞(T ) [36–38].

An evaluation of the specific heat C of DTRS (neglecting the metric contribution
Hm) gives the following expression

Call =
D

2
+
λ2

N
(< H2

e > − < He >
2) . (18)

The first part is related to the Gaussian Hamiltonian Hg and the second to the
specific heat C of the edge extrinsic curvature He .

The specific heat for the edge extrinsic curvature is shown in Figure 12 for the
two topologies considered.

The interpolation was done by the method of Ferrenberg and Swendsen [39, 40]
using histograms of He .
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Membranes and Folding IV

Figure 12: Specific heat C (edge extrinsic curvature part) of the sphere (left part) and of the
torus (right part).
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Membranes and Folding V

Figure 13: Maximum of the specific heat C max
N of the torus (3) and the sphere (2)

Using the data of the specific heat obtained by applying the extrapolation
method, we can get a very accurate estimate of the positions of the maxima and
of the heights.
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Membranes and Folding VI

Figure 13 shows C max
N of the torus and the sphere.

A change to Ld behaviour is very unlikely and for that reason the data strongly
suggest a continuous phase transition in agreement with previous work
[14, 20–23, 41, 42].

From the data shown in Figure 13 we can obtain the following upper boundaries
of critical exponents

Sphere:
α

νd
≤ 0.00± 0.04 Torus:

α

νd
≤ 0.06± 0.02 . (19)

Using this simple method, we cannot distinguish a diverging specific heat with
very small but positiv α, a logarithmic divergence αs = 0 and a power law cusp
αs < 0, where αs denotes the exponent of the singular part of the specific heat.

We will use the abbreviation α instead of αs .

Following Fisher [43], these three cases may be distinguished with a fit of the form

C(∆λ) = A ·
1
α

(
∆λ−α − 1

)
+ B , ∆λ =

∣∣∣λN
c − λ

∣∣∣ . (20)

Figure 14 shows such fits for α = 0.1 (power law), α = −0.01 (near logarithmic)
and α = −1.2,−2.0 (power law cusp).
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Membranes and Folding VII

The fits clearly favour a power law cusp of the specific heat with a large negative
value of α, although we were not able to estimate the exponent α precisely.

Figure 14: Plot of the specific heat C against x = 1
α

(
∆λ−α − 1

)
with α = 0.1 (upper left),

−0.01 (upper right), −1.2 (lower left) and α = −2.0 (lower right).
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Membranes and Folding VIII

Another possibility to determine the order of the transition is the cumulant VN of
the edge extrinsic curvature

VN := 1−
1
3
〈He

4〉N
〈He

2〉2N
, (21)

which behaves quite differently at temperature driven first- and second-order
transitions [36, 37] :

1. and 2.order: VN |min
N→∞

= 2
3 T 6=Tcfixed (22)

2.order: VN |min
N→∞

= 2
3 T = Tc (N) (23)

1.order: VN |min
N→∞

= 1− 2(E4
++E4
−)

3
(

E2
++E2
−

)2 T = Tc (N) (24)

E+ and E− are the energies of the system above and below the transition.

For a very weak first-order transition (E+ ≈ E−) we also have VN |min ≈ 2/3.

We computed VN defined by equation (21) using again the method of Ferrenberg
and Swendsen [39, 40].
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Membranes and Folding IX

The resulting figures show the predicted single peak minima with wings following
equation (22).

The finite size dependence of the minima of VN |min shown in Figure 15 distinctly
favours the asymptotic behaviour in equation (23) and therefore a continuous
phase transition or a very weak first order transition.

Figure 15: Finite size dependence of the minimum VN |min of the reduced cumulant of the
edge extrinsic curvature. (3) denotes data of the sphere, (2) those of the torus and the
arrow the large N limit 2/3 of a continuous transition.
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Membranes and Folding X

In general, finite size scaling predicts also a shift ∆λ = λN
c − λ∞c of the effective

transition ‘temperature’ λN
c proportional to N−1(= L−d ) for a first- and

proportional to N−1/νd (= L−1/ν) for a second-order transition.

Unfortunately λ∞c of dynamically triangulated random surfaces is not known.

For that reason, we have to use a two-parameter fit with unknowns λ∞c and νd .

But we can improve the reliability of this fit, because we know more.

First, the fit has to be a straight line (neglecting corrections to scaling) and we
have limN→∞∆λ(N) = 0.

Second, the shift ∆λ(N) is different for the specific heat and the cumulant in
general.

Therefore the slope of the fitted lines will be different in general, but we still have
limN→∞∆λ(N) = 0 for both observables.
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Membranes and Folding XI

Figure 16: Best fit of y = ∆λ against x = N−1/νd for the sphere (left part) and the
torus (right part). (3) denotes the specific heat C data, (2) those of the cumulant V.

Figure 16 shows the best fits for the sphere and the torus.

The estimates of the parameters are

λ∞c = 1.51± 0.04 , νd = 3.2± 0.5 (25)

for the sphere and

λ∞c = 1.47± 0.02 , νd = 2.5± 0.5 (26)

for the torus.
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Membranes and Folding XII

We turn now to the order parameter itself. Common practise is to take ζ = R/L

(R is the typical radius, L the linear size of the membrane) to be a suitable order
parameter [44, 4, 45–49].

Initially [49] it was also defined as Rg (L) = ζL (L→∞), with the linear size L of

the hexagon and the radius of gyration R2
g∝
∑

ij

〈
|Xi − Xj |2

〉
.

A suitable choice for the order parameter therefore is

ζ := R2/N (27)

with

R2 =
1

N(N − 1)

〈
N∑
i,j

σiσj (~Xi − ~Xj )
2
〉

(28)

σi denotes the number of nearest neighbours, i.e. the number of links connected
to a node i .

The associated susceptibility is

χR2 := Ld
(
〈ζ2〉 − 〈ζ〉2

)
=

1
N

(
〈R4〉 − 〈R2〉2

)
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Membranes and Folding XIII

Figure 17 shows the order parameter ζ and Figure 18 the susceptibility of the
sphere.

The results for the torus are similar.

Figure 17: Order parameter ζ = R2/N of the sphere. Errors are smaller than symbol size.
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Membranes and Folding XIV

Figure 18: Susceptibility χR2 of the sphere (Lines to guide the eye).
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Membranes and Folding XV

Another possible order paramter ζ′ = 〈R′2〉/N,

〈R′2〉 =
1
N

〈
N∑
i

(
~Xi − ~X

)2
〉

which exhibits a small increase near the phase transition and a slower decay of ζ′

for λ→0.

The difference is caused by a change of the internal geometry near the phase
transition [35].

With the data for the sphere in Figure 17 and the corresponding data of the torus
one can estimate the critical exponent β/νd of the order parameter assuming a
second order transition.

Here we use as the effective critical temperature the position of the peak of the
specific heat. C max (c.f. Figure 19).
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Membranes and Folding XVI

Figure 19: Scaling of the radius of gyration squared 〈R2(N)〉 at the position of the
maximum of the specific heat C max . (3) denots the data of the torus, (2) data of the
sphere.
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Membranes and Folding XVII

An estimate of β/νd using

〈R2(N, λeff
c )〉 ∝ Nβ/(νd) + 1 (29)

results in

Torus: β/νd = 0.28± 0.02 , Sphere: β/νd = 0.35± 0.04 (30)

and with the values of νd in equation (25) and (26)

Torus: β = 0.7± 0.2 , Sphere: β = 1.1± 0.2 (31)

Figure 20 shows the scaling of the maxima of the susceptiblity χ (equation (29),
Figure 18).
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Membranes and Folding XVIII

Figure 20: Scaling of the susceptibility χ (equation (29), Fig. 18) in the case of a torus
(3) and a sphere (2).
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Membranes and Folding XIX

The results are

Torus: γ/νd = 0.62± 0.06 , Sphere: γ/νd = 0.66± 0.06 (32)

and, using the values of νd in equation (25) and (26),

Torus: γ = 1.6± 0.5 , Sphere: γ = 2.1± 0.5 . (33)

With these large error bars and estimated values α ≈ −1.5 the results are almost
compatible with the scaling relation

α+ 2β + γ = 2 . (34)
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Polymer Sheets I

Figure 21: Example of a polymer sheet.
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Polymer Sheets II

Polymers are known to develop various forms, for example linear chains, stars,
rings, combs, ladders, three-dimensional networks and branched polymers.

All these kinds of polymers have linear chains between the branching point.

The kind of two-dimensional polymers we are studying are compact sheets of
monomers, which are linked together periodically with respect to two dimensions.

Between the branching points there is no chain and the polymers are highly
organized sheets.

The successful “in bulk” synthesis of such two-dimensional polymers was reported
recently [50, 51].

Stupp et al. polymerized self-organized bilayers by two different so-called
stitching reactions, which act within three distinct levels of the bilayer. Each
oligomer can not have more than two bonds within a layer.

In addition, not all possible bonds are present, because the stitching reactivity is
about 30 to 50% at the upper and lower layer (90% within the middle layer). Is it
possible to form a two-dimensional polymer instead of an ensemble of ladder
polymers?

What is the minimal reaction rate, needed for large two-dimensional polymers?

What kind of structures will be developed at different reaction rates?
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Polymer Sheets III

These are questions, which can be answered by percolation theory [52].

One of the most important results of percolation theory [53, 54] is related to
“universality”, if the system has short ranged interactions.

All presently available evidence strongly suggests, that the critical exponents
depend on the dimensionality of the lattice only — but not on the lattice
structure, boundary conditions and so on.

The exponents for bond or site percolation, for square, triangular or honeycomb
lattices etc. are the same.

We therefore would expect, that the clusters produced with the above cited
stitching reaction also may be described by these exponents.

Does there exist a large (“infinite”) cluster of bonded sites?

To answer this question, we define the fraction of sites in the largest cluster P∞
and the probability PS , that there is a “spanning cluster” of bonds, which
connects two opposite boundarys of the underlying lattice.

Then for an infinite lattice, P∞ is expected to vanish for (p − pc )→ 0+ as

P∞(p) ∝ (p − pc )β , (35)

where p is the probability, that a bond is present, and pc is the percolation
threshold, above which an infinite cluster exists.
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Polymer Sheets IV

With ns clusters of size s (number of polymers) the mean size of the finite
clusters is related to the percolation susceptibility χ (omnitting the largest
(“infinite”) cluster)

χ ≈
∞∑

s=1

′

s2 ns (p) , (36)

which diverges at pc as
χ(p) ∝ |p − pc |−γ . (37)

Finally, at p = pc the number ns of clusters with size s is expected to decay with
a power of s:

ns (pc ) ∝ s−τ . (38)

Here β, γandτ are the mentioned exponents.

Stupp et al. [50] suggest, that they synthesized large two-dimensional polymers.

Obviously, the effective reaction rate of the stitching reaction has to be larger
than the percolation threshold pc , if one wants to synthesize large sheets instead
of ladder polymers.

Since pc is not universal, we use a simple but sufficient model of the
two-dimensional polymer, to compute pc . In addition we will measure the
exponents.
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Polymer Sheets V

As a model of the two-dimensional polymer we used a stack of three layers, each
triangular, hexagonally shaped with free boundaries, as shown in Figure 21.

At the middle layer, the reaction rate was 100%, i.e. all allowed bonds (two can
react) were occupied.

For that purpose, the bonds of the triangular lattice were choosen successively at
random. If the number of bonds of each polymer was less than 2, the randomly
choosen bond was occupied.

Then we stitched the upper and lower layer using the same algorithm, until n+1

(n−1) bonds were occupied. n+1 (n−1) is the number of occupied bonds of the
middle layer n0 times the stitching probability (reaction rate) p of the upper and
lower layer.

Note, that n0 is not determined by the linear lattice size L, but may vary slightly
for each configuration.

Because of the restriction, that each polymer may be stitched to at most two
neighbours, we do not expect an infinite cluster or percolation at p = 0, i.e.
without bonds at the upper and lower layer, but an ensemble of linear polymer
chains.

On the contrary, at p = 1 all allowed bonds at all three layers are occupied,
resulting in an effective coordination number larger than two.
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Polymer Sheets VI

It is worth noting, that even at p = 1 the probability, that there is only one
cluster containing all polymers, vanishes with increasing system size L.

Within this model, it is very unlikely to prepare very large perfect two-dimensional
polymers.

If we want to answer the question, if a reaction rate of about 40% is high enough
to prepare infinite clusters, we have to determine the percolation threshold.

As noted, the value of pc is not universal, but depends strongly on the used
lattice and bond restrictions.

An unbiased way to estimate pc is to plot the probability PS of the occurence of
a spanning cluster as a function of p for different lattice sizes [? ].

The finite size scaling relation for PS simply reads

P
(L)
S (p) = P̃S

(
L

ξp

)
,

where P̃S is the scaling function and ξp the correlation length.

As a consequence, different curves P
(L)
S (p) for different choices of L should

intersect at p = pc in a common intersection point P̃S (0), apart from corrections
to scaling and a bias by the choice of the critical exponents.
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Polymer Sheets VII

Figure 22 shows this plot for the stitching reaction described above.
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Figure 22: Unbiased estimate of the percolation threshold pc = 0.110(3) using the
spanning probability PS .
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Polymer Sheets VIII

From this figure we get one of our main result, the percolation threshold
pc = 0.110(3).

Hence it follows, that the reaction rate of 30% to 50% reported by Stupp et al.
[50] was high enough (within the limits of our percolation model) to prepare an
“infinite” two-dimensional polymer.

Does the percolation of the stitching reaction lie in the same universality class as
the standard bond percolation?

Figure 23 shows a finite size scaling plot of P∞ using the assumed exact values
for β = 5/36 and ν = 4/3 and pc obtained from the spanning probability.
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Polymer Sheets IX
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Figure 23: Finite size scaling of the probability P(L)
∞ , which was defined as the fraction of

polymers in the largest cluster, with exponents ν = 4/3, β = 5/36 and pc = 0.110(3).

Within the accuracy of the data, the finite size scaling assumption seems to be
fulfilled.
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Polymer Sheets X

We may also compare the cluster size distribution to bond percolation.

Using γ = 43/18, we plotted the scaling function of the susceptibility χ in
figure 24.
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Figure 24: Finite size scaling of the susceptibility χ(L) with exponents ν = 4/3,
γ = 43/18 and pc = 0.110(3).
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Polymer Sheets XI

Apart from small deviations of the smallest system far from pc , the system sizes
simulated seem to be in the scaling regime.

The maximal values of χ vary by orders of magnitude in this range of L!

Finally, we are interested in the geometric properties of the cluster structure,
particularly at the percolation threshold pc . At pc the largest (spanning) cluster
should form a fractal with Hausdorff dimension dH .

This quantity can be defined with the number of polymers N within a sphere of
radius R and the relation

N = const.× RdH . (39)

Using the data of 1000 configurations of a L = 1001 hexagon at pc , which is
shown in figure 25, we measured dH (pc ) = 1.91(5) in good agreement with the
result of percolation theory 91/48 ≈ 1.896.
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Polymer Sheets XII
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dH = 91/48

Figure 25: Number of polymers N within a radius R of the largest cluster. The data of
1000 configurations of L = 1001 hexagons were accumulated. The dashed line has the
exact Hausdorff dimension (slope) dH = 91/48.
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Polymer Sheets XIII

Apart from the largest cluster, there are many smaller ones. Because of the
statistical nature of their structure, we restrict ourselves to the number ns of
clusters of size s (which is the number of polymers), which is expected to
decrease as a power of s. Within the accuracy of the data, the power law seems
to be fulfilled in figure 26.

Although the Fisher exponent τ ≈ 1.95(10) is somewhat smaller than the
expected one 187/91.

Most probably this is due to the finiteness of the system. High–quality data [? ]
showed, that ns is less than the expected power law for small s and higher for the
largest s.

Therefore, we underestimated τ systematically.
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Figure 26: Cluster distribution of 1000 configurations of L = 1001 hexagon (751501
polymers) at the percolation threshold pc ≈ 0.110. From the slope one computes the
Fisher exponents τ ≈ 1.95(10).
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Folding Transition I

In the absence of self-avoidance, polymerized [55] and fluid [56] membranes
adopt a crumpled random structure.

Theoretical predictions by Flory mean-field approximation and Monte Carlo
simulations [55] and renormalization group studies [57] supported the existence of
a high temperature crumpled phase for self-avoiding polymerized membranes also,
suggesting a possible finite temperature crumpling transition in the presence of an
explicit bending rigidity [10].

However, more extensive computer simulations [4, 58–60] found no crumpling of
self-avoiding tethered membranes in a good solvent.

This prediction was confirmed by experimental studies of graphitic oxide [5].

On the other hand, polymerized vesicles undergo a wrinkling transition [6], and
upon addition of 10 vol % acetone, Spector and co-workers [5] found small
compact objects, which appeared to be folded.

A poor solvent leads to (short-ranged) attractive interactions, and a single
membrane was found to be flat for high temperatures [58], but in a collapsed
state for sufficiently low temperatures [4].

59 / 100



Folding Transition II

The transition between the flat and the collapsed states of the membrane
proceeds through a sequence of folding transitions, which were first found by
cooling of a single membrane from the flat phase [44].

Because no hysteresis was found, it was ruled out that the folded configurations
are metastable states.

However, this method does not give sufficient evidence of the order or even the
existence of a transition. For instance, hysteresis can also be found at second
order phase transitions of finite systems and the results for one system size may
be misleading. In addition, the experimentally observed wrinkling transition is
first order [6].

Besides the nearest neighbour interactions, the membranes can be modeled
similar to those of Abraham and Kardar [44].
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Folding Transition III

The N particles of the polymerized membrane form the sites of a hexagonal
shaped triangular lattice.

The bond potential between nearest neighbour particles is

V B =
∑
j(i)

(
b0 − rij

)2
, (40)

with an equilibrium length b0 and distances rij between particle i and its nearest
neighbors j(i). In place of this harmonic potential, tethers were used by Abraham
and Kardar [44].

All particles interact through a shifted Lennard-Jones potential

V LJ
ij =


(

1
r12ij
− 2 1

r6ij

)
+
(

1
r12c
− 2 1

r6c

)
, rij <= rc

0 , rc < rij

(41)

with a cut-off at rc = 2.5. The repulsive part of this interaction guarantees
self-avoidance of the membrane.
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Folding Transition IV

The folding of the membrane can be described by the eigenvalues
λ1

2 >= λ2
2 >= λ3

2 of the inertia tensor

Tα,β =
1
N

N∑
i=1

(
riαriβ − rαrβ

)
, (42)

where α, β ∈ {x , y , z}, and the sum runs over all particles of a given
configuration; rα is the α component of the center of mass for a configuration.

We can estimate the expected change of the membrane eigenvalues by those of
an unfolded or folded disc with radius 1 and width d = 0.1 as shown in Table 1.

Taking into account all three eigenvalues, an unfolded, folded or twice folded
configuration can be distinguished.

A collapsed configuration would be indicated by approximately equal eigenvalues.
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Folding Transition V

configuration λ1
2 λ2

2 λ3
2

disc 0.2543 0.2473 0.00084
disc, folded 0.2524 0.0690 0.00332
disc, folded twice 0.0929 0.0487 0.01330
disc 1.0000 1.0000 1.00
disc, folded 0.9925 0.2790 3.95
disc, folded twice 0.3653 0.1969 15.83

Table 1: Eigenvalues of the moment of inertia tensor of a disc with radius 1 and width
d = 0.1. In the lower part, all numbers are relative to the values of the unfolded disc.

At the first folding transition, the eigenvalue λ2
1 stays constant approximately,

while the second eigenvalue λ2
2 decreases by a factor c ≈ 0.2790. Therefore, we

define an order parameter m by

〈m(β)〉 =

〈
1(

1−
√

c
) [ λ2(β)

λ2(β0)
−
√

c

]〉
, (43)

where λ2(β0) is a reference value of an unfolded membrane at β0 far below the
inverse critical temperature βc .
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Folding Transition VI

At a first order transition, the average order-parameter discontinuously jumps at
βc [38, 36, 37].

Contrary, at a continuous phase transition we expect a power law behavior of the
average order parameter 〈m〉(β) with an exponent β′, i.e.
〈m〉 ∝ (β − βc )β

′
, β > βc [61–64]. Indeed, the average order parameter 〈m〉

becomes very steep near βc with increasing number of particles N (data not
shown).

In principle, one can measure the increase of the slope and compare to the
predictions of finite size scaling theory.

Of course, the slope of 〈m〉(β) is proportional to the susceptibility χ, which can
be measured by the fluctuations of m also:

χ(β) = Ldβ
(
〈m2〉L − 〈m〉

2
L

)
. (44)

The susceptibility χ(β) is shown in Figure 27 and the scaling of the maximum
maxχ(β) in the inset of Figure 27.
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Folding Transition VII
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Figure 27: Susceptibility χ(β) for membranes with N = 127, 271, 547, 817 and 1141
particles. The solid lines were computed by the multi-histogram method. The scaling of
the maximum maxχ is shown in the inset.

At a first order transition, χ(βeffc ) is expected to increase proportional to
N = Ld [38, 36, 37].
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Folding Transition VIII

At a continuous phase transition, |β − βc |−γ± is predicted [61–64].

The Ld increase of χ(β) in Figure 27 gives evidence of the scaling at a first order
transition.

In addition, the width of the susceptibility peak should decrease as L−d

[38, 36, 37].

Figure 28 shows a finite size scaling plot of the susceptibility data. Within errors,
first order scaling behavior can be observed, at least above the inverse transition
temperature.
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Folding Transition IX
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Figure 28: Finite size scaling plot of the susceptibility χ(β) for a first order transition
using the value β∞c = 0.247(5) from Figure 29.

The transition temperature β∞c can be extrapolated by the position of the
maximum in χ(β) [37], the minimum of the cumulant [37] and the equal weight
criterion [65] of the order parameter distribution.
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Folding Transition X

At least for χ, the equal weight criterion predicts a shift of the effective transition
temperature proportional to L−2d [66, 65, 67], whereas a shift proportional to
∝ L−1/ν is expected for a continuous phase transition.

Using quadratic terms in the regression, the extrapolations in Figure 29 of the
three observables agree within errors.

The transition temperature of the first folding transition is found to be
β∞c = 0.247(5).
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Folding Transition XI
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Figure 29: Critical temperature β∞c = 0.247(5) determined by the position of the
maximal susceptibility χ, the minimum of the cumulant UL and equal-weight of the order
parameter distribution for the four largest system sizes.

The increase of the susceptibility is caused by the characteristic double-peak
structure of the order parameter distribution near βc , which is typical for a
discontinuous phase transition [38, 36, 37, 61, 66, 65, 67, 68].
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Folding Transition XII

Figure 30 shows the expected double-peak distribution P(m) at the equal height
transition temperature [65]. The development of a minimum in P(m) is
confirmed by the method of Lee and Kosterlitz [68].

The measured ∆F in the inset of Figure 30 is proportional to the free energy
difference at the equal height transition temperature and increases as (Ld )

x ,
x≈1.3.
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Folding Transition XIII

Figure 30: Probability distribution P(m, βew ) of the order parameter m at the
equal-weight transition temperature βew . The inset shows the free energy difference ∆F

at the equal-height transition temperature βeh, which increases ∝ (Ld )
x , x≈1.3.

Further, P(m) can be described by the reduced cumulant UL

UL(β) = 1−
〈m4〉L
3〈m2〉2L

. (45)

At a continuous phase transition, UL(β) is expected to approach 2/3 for all β.
The data shows a minimum, which becomes more pronounced for large N,
indicating a first order phase transition (figure not shown).

The folding of the membrane must be visible in the attractive part of the
potential energy, also. In fact, there is a jump in the potential energy and the
related specific heat develops a peak, although very slowly.

Besides the above defined order parameter, which is based on the geometry of the
membrane, we can derive a different order parameter from the attractive part of
the Lennard-Jones potential:

m̃ =
1
N

∑
i<j

Θ
(
rc − rij

)(
2
1
r6
ij

+ 2
1
r6
c

) . (46)
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Folding Transition XIV

Compared to m, the order parameter m̃ has the advantage, that it is a local
property.

Figure 31 shows the phase diagram in the (β, h)-plane of a membrane with 271
particles. The first order transition lines were computed by the multi-histogram
method [39].

For the transition from one to two folds, an order parameter similar to m is used,
which is based on λ1 instead of λ2. h = 1 is an upper limit for both transition
lines, because of the vanishing attractive interactions at h = 1.
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Folding Transition XV
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Figure 31: Phase diagram of a membrane with 271 particles in the β, h plane. The
symbols denote the result of the simulations, the solid lines are the first order transition
lines computed by the multi-histogram method.

The unfolding of a singly folded membrane bears close resemblance to the
unbinding transition of two distinct surfaces.
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Folding Transition XVI

Regarding a folded membrane of N particles, the fraction of particles near the
crease decreases with 1/

√
N.

Therefore, the nature of the folding transition is related to the nature of the
underlying unbinding transition of two distinct membranes without the crease.

The shape fluctuations of a single membrane of lateral size ξ‖ are characterized
by the typical fluctuation amplitude ξ⊥ ∝ ξ‖ζ .

Polymerized membranes without lateral tension have a roughness exponent
ζ ≈ 0.6.

The steric hindrance of two interacting membranes at separation l leads to an
overall loss of entropy, which can be regarded as an effective fluctuation-induced
repulsion, Vrep ∝ 1/lτ with decay exponent τ ≈ 3.3 for polymerized membranes.

This repulsive interaction causes the unfolding of the membrane even in the
presence of attractive van der Waals interactions.

However, the crease of the folded membrane introduces an additional attractive
interaction. This situation is similar to a membrane interaction which exhibits
two minima at two different separations.

Such an interaction implies a first-order unbinding transition [69] and may be an
explanation of the first-order folding transition.
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Membrane Proteins: An example I

Rhodopsin as an example:

Figure 32: Rhodopsin structure.

Rhodopsin is a light-sensitive receptor protein.
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Membrane Proteins: An example II

Rhodopsin has seven transmembrane domains.

Rhodopsin has loops.

The linker can be mapped onto a coarse grained model.

This mapping allows extensive studies on the physical properties of the linker.

There is no bending rigidity so that they appear to be very flexible.

The loops show generic behaviour.

Figure 33: Rhodopsin. Image take from
http://wordpress.mrreid.org/2012/01/02/night-vision/.
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Membrane Proteins: An example III

E1

C1

E2

C2

E3

C3

1 2 3 4 5 6 7

N

C

Figure 34: Rhodopsin structure (cnt).
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Membrane Proteins: An example IV
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Figure 35: Rhodopsin structure (cnt).
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Membrane Proteins: An example V

Figure 36: rhodopsin
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Membrane Proteins: An example VI

Figure 37: Entropic repulsion of loops.
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Membrane Proteins: An example VII

!

Figure 38: Rhodopsin end-to-end distance.
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Membranes and Translocation I

good solvent

bad solvent

pore

membrane

100

101

Rg

20 100 200 N

Figure 39: Translocation of a macromolecule through a membrane pore. Image taken from [2].
The radius of gyration of a flexible polymer of length N in good solvent conditions scales as
Rg ∼ Nν with ν = 0.61 (filled circles, full lines). When increasing the solvent-polymer
repulsion aMS by ∆a (hence decreasing the solvent quality), the scaling of Rg becomes more
and more shallow (open symbols). Mimicking bad solvent conditions by reducing the
monomer-monomer repulsion aMM by ∆a yields similar effects (cross-like symbols). For better
visibility the latter data have been shifted by a factor 4.
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Membranes and Translocation II

We shall look at the translocation process including a polymerized membrane with a
narrow pore to separate two volumes with potentially different solvent conditions.

For the polymer all beads are subject to a DPD thermostat and a soft-repulsive
interaction. For any two beads i and j within an interaction range

rij = |rij | = |ri − rj | ≤ r0 (47)

the forces are:

FC
ij = aij (1− rij/r0) r̂ij (48)

FD
ij = −γij (1− rij/r0)2 (̂rij · vij )̂rij (49)

FR
ij = σij (1− rij/r0)ζij r̂ij . (50)

Here, ζij is an uncorrelated random variable with zero mean and unit variance,
vij = vi − vj |, and r̂ij = rij/rij .
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Membranes and Translocation III

The unit of length of the simulations is given by the thermostat’s interaction range,
r0. The noise strength σij is related to the dissipation strength γij via the
fluctuation-dissipation theorem

σ2
ij = 2 γij kB T . (51)

To obtain a polymer, beads are connected by FENE bonds, i.e. we imposed a
potential

UF (ri,i+1) = −
k(2 r0 − `)2

2
ln

{
1−

(
ri,i+1 − `
2 r0 − `

)2
}

(52)

with kF = 40 kB T and ` = 0.7 r0.

The separating membrane is implemented as a double layer of DPD beads connected
via simple Hookean springs

U2(ri,i+1) = k0(|ri,i+1| − l0)2/2 (53)

(k0 = 100 kB T , l0 = 0.45 r0), and an additional bending stiffness was imposed via a
potential of the form U3(ri−1, ri , ri+1) = κ[1− cos(φ)], with κ = 10kB T and
cosφ = r̂i−1,i · r̂i,i+1.
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Membranes and Translocation IV

To model the nanopore, a square of 2× 2 ’ghost beads’ in each membrane layer is
given a vanishing interaction with all other beads except the neighboring membrane
beads. These ghost beads are hence only involved in calculating the structural forces
that established the separating membrane. The nanopore had thus a diameter of
roughly r0.
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Membranes and Translocation V
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Figure 40: (a) The unbiased translocation time τ for good solvent conditions (filled circles, full
line; data shifted by factor 1.5 for better visibility) scales as τ ∼ Nβ with β = 2.33. This
scaling is also observed when decreasing the solvent quality by increasing aMS (open symbols)
or decreasing aMM (cross-like symbols; shifted by factor 4). (b) The exponent ν decreases with
decreasing solvent quality. Increasing aMS (open circles) and decreasing aMM by ∆a from
a0 = aSS = 25kB T have similar effects. In contrast to ν the exponent β ≈ 2.33 (dashed line)
hardly varies with solvent conditions.
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Membranes DNA Interaction I

MinD Protein
PBD accession number 3Q9L

Electrophoretic mobility shift assays 
(EMSAs) of dsDNA fragments (200 fmol) 
labeled by 50 -hexachloro-6- carboxy-
fluoresceine (HEX) incubated in the 
presence of 1 mM ATP or ADP with or 
without (minus) MinD.

Figure 41: MinD Protein.
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Membranes DNA Interaction II

Figure 42: MinD (cyan) chased by MinE (magenta) to form spiraling waves on an artificial
membrane. Taken from (https://en.wikipedia.org/wiki/Min_System).

The model includes two E. coli sister chromosomes described as two self-avoiding
ring polymers.
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Membranes DNA Interaction III

Approximating biological “storage” such as the bacterial nucleoid an elongated
rectangular cuboid of aspect ratio 1 : 8 comparable to the aspect ratio of the
nucleoid [71] confines both ring polymers (representing the replicated sister
chromosomes).

Studying two polymer rings of lengths N = 80, the linear dimensions of the
confining geometry are set up such that the radius of gyration Rgyr of the
unconfined chain is larger than the linear square box sizes.

The choice of parameters (aspect ratio of the cell of 1 : 8 and volume fraction
with a single chain only of 10%) reflects the situation for E. coli and its
chromosome at the onset of segregation [71].

An overlapping configuration of two chains is created to initiate the segregation
process as is illustrated in Fig. S1. Independent Monte Carlo trajectories (driven
by different random number sequences) representing the dynamics of the
segregation process are then sampled.
In order to study the impact of nonspecific DNA tethering to the membrane and
to mimic the oscillatory behaviour of the MinD protein MC simulations
representing the following biological situations.
(i) mutant case without possibility of tethering,
(ii) homogeneous tethering,
(iii) fixed gradient of tethering probability,
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Membranes DNA Interaction IV

(iv) oscillating tethering probability (representing the MinD oscillations) and
(v) smooth gradient of tethering probability.
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Figure 43: Disentangling of two circular chromosomes.
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Membranes DNA Interaction V

Figure 44: Disentangling of two circular chromosomes (cnt’d).
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Membranes DNA Interaction VI
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Figure 45: Disentangling of two circular chromosomes.
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Excercises I

Exercise 1: tbd
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