
Random Numbers

Dieter W. Heermann

Monte Carlo Methods

2009

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 1 / 26

Outline

1 Introduction

2 Generators based on Recursion
Linear Congruential Generators
Inverse Congruential Generators
Add-with-Carry/Subtract-with-Carry Generators
Fibonacci Generators

3 Non-Uniform Distributions

4 The Accept/Reject Method

5 Testing Random Numbers

6 Literature

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 2 / 26

Introduction

Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.
John Von Neumann, 1951

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 3 / 26

Introduction

Intuitively, we can list a number of criteria that a sequence of numbers
must fulfill to pass as a random number sequence:

unpredictability,

independence,

without pattern.

These criteria appear to be the minimum request for an algorithm to
produce random numbers. More precisely we can formulate:

uniform distribution,

uncorrelated,

passes every test of randomness,

large period before the sequence repeats (see later),

sequence repeatable and possibility to vary starting values,

fast algorithm.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 4 / 26

Generators based on Recursion

The most common generators use very basic operations and apply them
repeatedly on the numbers generated in previous steps. We formulate this
as a recursion relation

xi+1 = G (xi), x0 = initial value , (1)

where we have made explicit only the dependence on the immediate
predecessor. The most important representatives of this class of generators
are the

linear congruential,

lagged Fibonacci,

shift-register or a

combination of linear congruential.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 5 / 26

Generators based on Recursion Linear Congruential Generators

Linear Congruential Generators

A very simple generator is constructed using the modulo function.

G (x) = (xa + b) mod M (2)

This function produces a dilatation, translation and a folding back into the
interval. Random number generators based on this function are called
linear congruential generators or LCG(a,b,M) for short. If we assume
integers as the set on which the modulo function is defined, then for
example, the range of integer numbers for a 32-bit architecture is at most
M = 231 − 1. Here we assume that one bit is taken for the sign of the
number. Then the numbers range at most from 0 to M − 1. Of course, we
can map these onto the real interval between 0 and 1, recognizing that
this is an approximation to the real-valued random numbers.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 6 / 26

Generators based on Recursion Inverse Congruential Generators

Inverse Congruential Generators

A very simple generator is constructed using the modulo function.

xn+1 = (x−1
n a + b) mod M , (3)

where x−1
n is the multiplicative inverse of xn in the integers modm with

0−1 defined as 0.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 7 / 26

Generators based on Recursion Inverse Congruential Generators

The choice of the parameters a, b and M determine the statistical
properties and how many different numbers we can expect before the
sequence repeats itself.

The period can be shown to be maximal, if M is chosen to be a prime
number. Then the whole range of numbers occurs.

Here we only consider modulo generators with b = 0.

Such generators are called multiplicative and the short form
MLCG(a,M) is used for such generators.

These are the most commonly used, since one can show that additive
generators, i.e. generators with b in general non zero have undesirable
statistical properties.

The choices for the parameter a are manifold. For example a = 16807,
630360016 or 397204094 are possible choices with M = 231 − 1.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 8 / 26

Generators based on Recursion Inverse Congruential Generators
Page 1 of 1MOD.C

Printed For: Heermann

/*-- */
/* Modulo Generator */
/*-- */
int ModGenerator(modul,multi,inc,seed,max_sweeps,x)
 int modul;
 int multi;
 int inc;
 int seed;
 int max_sweeps;
 float *x;
{
 /*-- */
 /* Declarations */
 /*-- */
 int i;
 double r;
 double factor, increment, modulus;
 /*-- */
 /* End of declares */
 /*-- */

 r = (double) seed;
 factor = (double) multi;
 increment = (double) inc;
 modulus = (double) modul;

 for(i=0; i< max_sweeps; i++) {
 r=fmod(r*factor + increment,modulus);
 x[i] = (float) r / modulus;
 }
 return 0;
}

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 9 / 26

Generators based on Recursion Inverse Congruential Generators

In C/C++: Page 1 of 1ranf.c

#include <stdlib.h>
int iseed, randInt;
float randFloat;

srand(iseed);
randInt = rand();
randFloat = (float) randInt / (float) RAND MAX;

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 10 / 26

Generators based on Recursion Add-with-Carry/Subtract-with-Carry Generators

Add-with-Carry/Subtract-with-Carry Generators

Add-with-carry and subtract-with-carry generators rely on two
numbers, the carry c and the modular base M.

Add-with-carry generator;

xn+1 = (xn−s + xn−r + c) mod M (4)

Subtract-with-carry

xn+1 = (xn−s − xn−r − c) mod M (5)

Problems:

Require an initial seed of a sufficiently long sequence.
Pairs (or triplets) of terms fall on planes (see modulo generator).

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 11 / 26

Generators based on Recursion Fibonacci Generators

Fibonacci Generators

The lagged Fibonacci generator, symbolically denoted by LF(p,q,⊗) with
p > q, is based on a Fibonacci sequence of numbers with respect to an
operation which we have given the generic symbol ⊗.
Let S be the model set for the operation ⊗, for example the positive real
numbers, the positive integers, or the set S = {0, 1}. The binary operation
⊗ computes a new number from previously generated numbers with a lag p

xn = xn−p ⊗ xn−q , p > q . (6)

To start the generator we need p numbers. These can be generated using
for example a modulo generator. The advantage of the lagged Fibonacci
generator, apart from removing some of the deficiencies that are build into
the modulo type generators, is that one can operate on the level of
numbers or on the level of bits.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 12 / 26

Generators based on Recursion Fibonacci Generators

Page 1 of 1FIBO.C
Printed For: Heermann

 for(i=0; i< max_sweeps; i++) {
 mf[p] = mf[p] + mf[q];
 if (mf[p] > 1) mf[p] -= 1;
 x[i] = mf[p];
 if (++p == lagP-1) p = 0;
 if (++q == lagP-1) q = 0;
 }

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 13 / 26

Generators based on Recursion Fibonacci Generators

In the following I have listed some lagged Fibonacci generators:

Recursion Relation Period

xi = xi−17 − xi−5 mod (2n) (217 − 1)2n−1

xi = xi−17 + xi−5 mod 2n (217 − 1)2n−1

xi = xi−31 − xi−13 mod 2n (231 − 1)2n−1

xi = xi−55 − xi−24 224(297 − 1) with 24 Bit Mantissa

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 14 / 26

Generators based on Recursion Fibonacci Generators

Example: The shift bit register generator R250
Page 1 of 2R250.C

Printed For: Heermann

include <math.h>
define RAND_MAX 2147483647

/*==*/
/* */
/* Random Number Generator: R 2 5 0 */
/* */
/* program version 1.0 for C */
/* Dieter W. Heermann */
/* may 1990 */
/*==*/

int init_r250(seed, m_f_ptr)
 int seed;
 int *m_f_ptr;
 {

 int i,tmp, dummy, one ;
 int *start;

 start = m_f_ptr;
 srand(seed);
 one = 1;

 /* warm up the usual random number generator */
 for (i=0; i< 100; i++)
 {dummy = rand();
 }

 /* now draw the 250 (251)initial bit sequences */
 for (i=0 ; i<251; i++)
 {*m_f_ptr++ = rand();
 }

 /* now orthogonalize as best as we can */
 m_f_ptr = start;
 for (i=0; i < 30; i++)
 { tmp = *m_f_ptr;
 *m_f_ptr = tmp | one;
 one = one << 1;
 m_f_ptr++;
 }

 return 0;
 }

int r250 (n, x_ptr, m_f_ptr, save)
 int n;
 float *x_ptr;
 int *m_f_ptr;
 int save;
 {

 int ind ;
 int j, min,k,ll;
 float *ran_ptr;

 ind = save;
 ll = n + 250;
 ran_ptr = x_ptr;
 j = 1;

For example, we can construct
a generalized shift-register
generator GFSR(p,q,⊗), where
the operation is interpreted as
the exclusive or, which acts on
every of the 32 bits in a
computer word. This generator
is also known under the name
of R250. (Follow this link to
access the code for the
R250.c.)

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 15 / 26

http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C
http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C
http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C

Non-Uniform Distributions

Non Uniform Distributions

Let us turn now to the generation of non-uniform distributions. First
we look at the normal or Gaussian distribution.

Typically algorithms generating non-uniform variates do so by
converting uniform variates.

In its most straightforward form a normal deviate x with mean < x >
and standard deviation σ is produced as follows:

Let n be an integer, determined by the needed accuracy. Then

sum n uniform random numbers ri from the interval (−1, 1):

sn =
n∑

i=1

ri

and let x =< x > +σsn
√

3.0/n .

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 16 / 26

Non-Uniform Distributions

Let G (x) be a function on the interval [a, b] with 0 < G (x) < 1 and
f (x) the probability distribution f (x) = a exp [−G (x)], where a is a
constant.

1: Generate r from a uniform distribution on (0, 1)
2: Set x = a + (b − a)r
3: Calculate t = G (x)
4: Generate r1, r2, ..., rk from a uniform distribution on (0, 1) (k is

determined from the condition t > r1 > r2 > ... > rk−1 < rk)
5: if t < r1 then
6: k = 1
7: end if
8: if k is even then
9: reject x and go to 1

10: else
11: x is a sample
12: end if

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 17 / 26

Non-Uniform Distributions

An interesting method for generating normal variates is the polar
method. It has the advantage that two independent, normally
distributed variates are produced with practically no additional cost in
computer time.

1: Generate two independent random variables, U1,U2 from the
interval (0, 1).

2: Set V1 = 2U1 − 1, V2 = 2U2 − 1
3: Compute— S = V 2

1 + V 2
2

4: if S ≥ 1 then
5: return to step 1
6: else
7: x1 = V1

√
−2 ln S/S

8: x2 = V2

√
−2 ln S/S

9: end if

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 18 / 26

Non-Uniform Distributions

-4 -2 0 2
r

0

1000

2000

3000

4000

co
un

t

n = 100

Polar Method

-4 -2 0 2
r

0

50

100

150

200

co
un

t

n = 100

Polar Method

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 19 / 26

The Accept/Reject Method

The Accept/Reject Method

Another idea of converting one distribution into another is to accept
or reject drawn number for an initial distribution such that the
accepted numbers have the desired distribution.

Assume that we are given a uniform random number generator
U ∼ (0, 1) and X ∼ g .

We want to generate Y ∼ f .

Assume that there exists a constant c such that f (x) < cg(x) for all
x .

1: Generate X ∼ g
2: Generate U ∼ (0, 1)
3: if U ≤ f (X)/cg(X) then
4: Y = X
5: else
6: Goto 1
7: end if

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 20 / 26

The Accept/Reject Method

To proof that this is correct we show that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y) .

Note that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y)

P(U ≤ f (X)/cg(X))
=

∫ y
−∞

∫ f (x)/cg(x)
0 g(x)dudx∫∞

−∞
∫ f (x)/cg(x)
0 g(x)dudx

which simplifies to ∫ y

−∞
f (x)dx .

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 21 / 26

Testing Random Numbers

Testing Random Numbers

A number of statistical tests have been devised to check for the
properties of random number generators. To name just a few
prominent tests

χ2,
Kolmogorov-Smirnov,
correlation,
run and
visual test.

The statistical tests are tests how well the empirical distribution, i.e.,
the generated sequence, fits a test distribution. For example, the
simple frequency test χ2 is a test that virtually all random number
generators will pass.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 22 / 26

Testing Random Numbers

The run test tests whether an empirical distribution has monotone
decreasing or increasing subsequences and confronts these with the
expectation for their occurrence.

Let us assume that we want to test for monotone increasing
subsequences. Such a test is called a run test up, otherwise run test
down.

A run of length r of a sequence x = (x1, ..., xn) is a maximal strictly
monotonically increasing (decreasing) subsequence (xi , ..., xi+r−1),
i.e.,

xi−1 > xi < ... < xi+r−1 > xi+r (7)

with x0 positive infinite and xn+1 negative infinite.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 23 / 26

Testing Random Numbers

The expectation for the distribution of runs is derived from a simple
permutation argument and will not be reproduced here.

For large n, one can show, that the probability to get a run of length
r is given by r/(r + 1)!, hence

1/2, 1/3, 1/8, 1/30, 1/144, (8)

The way the test is derived shows that this tests for correlation in the
generated sequence.

The expected probabilities for the sequences reflect the independence
from correlation.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 24 / 26

Testing Random Numbers

A very easy test is the lattice test.

Suppose we have to visit the sites of a simple cubic lattice L3 at
random.

The three coordinates are obtained from three successively generated
random numbers r1, r2, r3 ∈ (0, 1), as

1: ix = rz ∗ L + 1
2: iy = rz ∗ L + 1
3: iz = rz ∗ L + 1

where ix , iy , iz are integer variables, implying a conversion of the real
right-hand sides to integers, i.e., removal of the fractional part.

If there are no correlations between successively generated random
numbers all sites will eventually be visited.

However, only certain hyperplanes are visited if correlations exist.

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 25 / 26

Literature

Literature

F. James, A review of pseudorandom number generators,Computer
Physics Communications 60 (1990) 329-344

G. Marsaglia et al., A random number generator for PC’s, Computer
Physics Communications 60 (1990) 345-349

G. Marsaglia, Random numbers fall mainly in the planes, Proc Natl
Acad Sci USA 1968; 61(1): 252̆01328.

G. Marsaglia et al., Toward a universal random number generator,
Stat. Prob. Lett. 9 (1990) 35

CERN program library CERNLIB: RIWIAD, RADMUL, DIVONNE
etc. VEGAS: G. P. Lepage, Journal of Computational Physics 27
(1978) 192- 203

RAMBO: R. Kleiss et al., Computer Physics Communications 40
(1986) 359-373

Dieter W. Heermann (Monte Carlo Methods) Random Numbers 2009 26 / 26

	Outline
	Introduction
	Generators based on Recursion
	Linear Congruential Generators
	Inverse Congruential Generators
	Add-with-Carry/Subtract-with-Carry Generators
	Fibonacci Generators

	Non-Uniform Distributions
	The Accept/Reject Method
	Testing Random Numbers
	Literature

