
1. Introductory Examples

We introduce the concept of the deterministic and stochastic simulation
methods. Two problems are provided to explain the methods: the percolation
problem, providing an example for the application of a stochastic method and
the simulation of a particle in a force field, providing an example for the ap-
plication of a deterministic method. We also work out three constraints that
one encounters: Finiteness of the system, finiteness of the sample size and
the accuracy.

1.1 Percolation

A problem lending itself naturally to a computer simulation approach is that
of percolation. Consider a lattice, which we take, for simplicity, as a two-
dimensional square lattice. Each lattice site can be either occupied or un-
occupied. A site is occupied with a probability p ∈ [0, 1] and unoccupied
with a probability 1− p. If p is small than only a tiny fraction of the sites is
occupied and only small isolated patches of occupied sites that are close to
each other exist. On the other hand, if p is large, than large patches of near
lying occupied sites exist. We may at this point speculate that for p less than
a certain probability pc only finite clusters exist on the lattice. We define
more precisely what we mean by patches or clusters by saying: A cluster is
a collection of occupied sites connected by nearest-neighbour distances (see
Figure 1.1). For p larger than or equal to pc, there exists a large cluster (for
an infinite lattice, i.e., in the thermodynamic limit) such that for an infinite
lattice the fraction of sites belonging to the largest cluster is zero below pc,
and non zero above pc. For d = 1 the situation is straight-forward: pc = 1.
For d > 1 the computation of pc is non-trivial, and analytic results for the
percolation threshold pc are only available for certain dimensions or special
lattices. From the point of view of computer simulation we are interested in
the calculation of the percolation probability P∞(p) (defined as the number
of occupied sites in the largest cluster divided by the lattice size) as a function
of p to determine the percolation threshold pc.

A simple enumeration of all the possible configurations, computing the
fraction of sites that belong to the largest cluster of a configuration, is im-
possible. The number of configurations is 2N where N = Ld, L the linear

2 1. Introductory Examples

Occupied Site

Unoccupied Site

Cluster of 3 Sites

Cluster of 1 Site

Fig. 1.1. Percolation problem: Shown is part of a simple two-dimensional lattice
with occupied and unoccupied lattice sites. Shown is also a cluster of nearest-
neighbour sites

Fig. 1.2. Configurations generated by a stochastic computer simulation of the per-
colation problem. The left figure shows a configuration generated with occupation
probability p = 0.5. The configuration shown in the right part of the picture was
generated using p = 0.6. The largest cluster is marked

system size and d the space dimension. The question arises whether one can
obtain an approximation for the percolation threshold by computer simula-
tion. Since we can not enumerate the configurations, we need to sample the
space of all possible configurations, i.e. draw a finite subset of configurations
|S| = n. We observe that all configurations have the same weight, and we are
allowed to draw from the ensemble of all possible configurations a subset at
random.

To keep the computer simulation approach transparent we stay with the
two-dimensional square lattice. By its nature the problem suggests a stochas-
tic approach. Suppose one could generate a lattice filled with a given proba-
bility and check whether a percolating structure occurs. To be sure that one
is definitely above or below the percolation threshold an average over many

1.1 Percolation 3

Fig. 1.3. Site percolation on the simple square lattice. Shown is the percolation
probability P∞ as a function of the occupation probability p

such samples must be taken. Running through a range of p values the perco-
lation threshold is narrowed down until sufficient accuracy is established.

Algorithmically the problem can be treated as follows: We set up a two-
dimensional array to hold the occupied or unoccupied sites. All sites of the
lattice are visited by going successively through all rows (columns). For each
element of the array a uniformly distributed random number r ∈ [0, 1] is
drawn. If r is less than p, then the element is set to one (occupied) oth-
erwise 0 (un-occupied). After having visited all elements, one realization or
configuration is generated. (For a full program see the online supplement.)

Examples of percolation configurations are shown in Fig 1.2. For a value of
p equal to 0.5 (Fig 1.2 left) there are only scattered finite clusters. Choosing p
equal to 0.6 (Fig 1.1 right) a large cluster exists which occupies a substantial
fraction of the lattice.

Performing an analysis of a configuration for an infinite cluster two pos-
sibilities arise: either a cluster exists that occupies a finite fraction of the
lattice, as in the case p = 0.6, then p is a candidate for being greater than or
equal to the percolation threshold, or the opposite case is true. To obtain an
average value for the percolation probability P∞(p) the generation of a con-
figuration with the analysis must be performed n-times. To see where some of

4 1. Introductory Examples

the difficulties lie in connection with such simulations, we look at the results
for the percolation probability P∞ (d = 2) (Fig 1.3).

The first difficulty is the size dependence of the results for the percolation
probability. Intuitively we expect that it should be easier to generate clus-
ters that occupy a finite fraction of the lattice for small lattices. This would
shift the percolation threshold to smaller p values. Indeed, the results on the
percolation probability for the three-dimensional lattice displayed in Fig 1.3
show this behaviour. We note further that no sharp transition occurs for the
finite small lattices. The percolation threshold is smeared out and difficult to
estimate.

The second difficulty is the number of samples. For an accurate deter-
mination of pc, quite a large number of samples have to be taken to reduce
the statistical uncertainty. This holds true for other such direct simulations
(simple sampling, as well as for more sophisticated sampling methods). The
third difficulty concerns the random numbers and thus the inherent accuracy
of the method. A problem arises if the random numbers have some built-in
correlations. Such correlations are extremely dangerous since they bias the
results and can only be detected if some aspects of the problem are known
from different methods or the results show some extreme anomaly.

The approach described above to determine the percolation threshold is
an example of a stochastic simulation method, in particular of a Monte Carlo
simulation. As the name suggests, such simulations are intricately connected
with random numbers.

1.2 A One-Particle Problem

A particle moving in a spring potential, i.e., a one-dimensional harmonic
oscillator, supplies another illustrative example where a solution is obtainable
by computer simulation. Although the system is trivial to solve analytically, it
nevertheless provides insight into possible ways to attack problems involving a
collection of interacting particles not readily solvable with analytic methods.
The nature of the problem is deterministic, in the sense that we start from
a Hamiltonian description of the particle moving under the influence of the
force exerted by the spring (see Figure 1.4), i.e.,

H =
p2

2m
+

1
2
kx2 , (1.1)

where p is the momentum, m the mass of the particle, k the spring constant
and x the position. In addition to the Hamiltonian, we need to specify the
initial conditions (x(0), p(0)). There is no coupling to an external system, and
the energy E is a conserved quantity. The particle will follow a trajectory on
a surface of constant energy given by

1.2 A One-Particle Problem 5

p2

2mE
+

kx2

2E
= 1 . (1.2)

Having written down the Hamiltonian we have some options as to the
form of the equations of motion. We may reformulate the problem in terms
of a Lagrangian and derive the equation of motion or cast the problem in the
form of the Newtonian equation. The algorithm for a numerical solution and
its properties depend on this choice. Here we take the Hamiltonian form of
the equation of motion

dx

dt
=

∂H
∂p

=
p

m
,

dp

dt
= −∂H

∂x
= −kx . (1.3)

We would like to compute properties of the system as it moves along a
path (x(t), p(t)) in phase space. In general, the complexity of the equations
of motion defies an analytic treatment, and one resorts to a numerical inte-
gration. We go about solving the problem by approximating the continuous
path by a polygon, i.e., to first order the differential is taken as

U

x

~x2

Fig. 1.4. Potential for a harmonic spring

x

p

Fig. 1.5. Shown in phase space is the surface of constant energy for the one di-
mensional spring

6 1. Introductory Examples

df

dt
=

1
h

[f (t + h)− f (t)] . (1.4)

h being the basic time step. With such an approximation a solution of the
equations of motion can be obtained only at times which are multiples of the
basic unit h. Note that if the basic time step is finite there will always be a
certain error, i.e., the generated path will deviate from the true one. Inserting
the discretization for the differential into the equations of motion, we obtain
the following recursion formulae for the position and the momentum:

dx

dt
∼=

1
h

[x (t + h)− x (t)] =
p (t)
m

,
dp

dt
∼=

1
h

[p (t + h)− p (t)] = −kx (x)

(1.5)

x (t + h) = x (t) +
hp (t)

m
, p (t + h) = p (t)− hkx (t) (1.6)

Given an initial position x(0) and momentum p(0) consistent with a given
energy, the trajectory of the particle is simulated. Starting from time zero,
the position and momentum at time h are computed via the above equations;
then at t = 2h, 3h, ... etc. Any property one is interested in can be computed
along the trajectory that is generated by the recursion relation. An example
of a trajectory based on the polygon method is shown in Fig 1.6. The path
is a spiral, indicating that energy dissipated.

Our algorithm is an iteration

(x, p)i+1 = G((x, p)i), (x, y)0 = initial value , (1.7)

where

xi+1 = xi + hpi (1.8)
pi+1 = pi − hkxi . (1.9)

The fixpoint for this iteration is at

Fig. 1.6. Trajectories in phase space for the spring problem as generated with a
simple algorithm.

1.2 A One-Particle Problem 7

x = 0 (1.10)
p = 0 (1.11)

Due to the linear approximation that we made for the differential we find
the following equation (

xi+1

pi+1

)
=
(

1 h
−hkx 1

)(
xi

pi

)
(1.12)

Let λ1, λ2 be the eigenvalues of the matrix A with the eigenvectors u1, u2.
We can write zn = (x, y)n as a linear combination

zi = αiu1 + βiu2 , (1.13)

and by induction we find

zi = α0λ
i
1u1 + β0λ

i
2u2 , (1.14)

and note that the eigenvalues for this problem are given by

λ1/2 = 1± ih
√

k (1.15)
= r(cos θ ± i sin θ) (1.16)

and most important

r =
√

1 + h2k . (1.17)

Even if we try very hard and set the time step h to a very small value we
never get the correct solution. The solution we obtain is always a spiral and
not an ellipse.

For a collection of particles we are faced with similar problems. Due to the
finite step size the trajectory departs from the true one. Also we must ensure
that the alogrithm that we are developing conserves phase space volume.

We are interested in developing algorithms of high order in h to keep
the error as small as possible. The basic time unit determines the simulated
real time. A very small time step may have the consequence that the system
does not reach equilibrium during a run. The kind of approximation made
to solve the spring problem numerically on a computer is but one type. In
the following, more sophisticated schemes will be presented for determinis-
tic simulations. Such methods are known as molecular dynamics. In many
cases, computer simulation methods offer a surprisingly simple and elegant
approach to the solution of a problem. In the following chapters we study
some most commonly used methods.

8 1. Introductory Examples

1.3 A little help for the percolation problem

1.3.1 From the algorithm to the program

In the percolation problem we pose the question what the probability is with
which we must occupy lattice points such that we can reach the opposite
lattice edge over connected nearest neighbour sites. Nearest neighbour sites
of the lattice are connected if both sites are occupied. If we choose 1 for the
probability for the occupation of the lattice sites then we always will have
connectivity between opposite edges of lattice. On the other hand if we choose
zero for the probability of occupation then there will be no connectivity
between opposite edges. Is there a probability (percolation threshold) pc > 0
such that there is no connectivity below pc and connectivity above pc?

1.3.2 The structure of the program

The basis for the computation of the percolation threshold is a Monte Carlo
algorithm that makes use of random numbers. Here successively generated
configurations will be independent and averaging is done over these indepen-
dent configurations.

Our task is to work out a program for the simulation of the site percolation
problem. With other applications in mind we will not make use of some
features of the problem that would allow us to write very compact code.
Rather we deliberately make the program as general as possible for it to
serve as a starting point for other projects. The basic parts of the program
will be

• The lattice that will hold the occupation variables, i.e., whether a site is
occupied or not.

• Fixing the percolation probability.
• A loop for the generation of configurations.
• A loop to cycle through the lattice.
• A random number generator that delivers uniformly distributed numbers

in the interval [0, 1].
• Analysis of the generated configuration.

Let us start from the infamous hello-world program. The first task is
to declare the lattice for the occupation variable. Since the lattice site can
only be occupied or unoccupied we only need a declaration for binary data.
However, we make to program more general right from the start. We declare
the lattice of type integer. Next we fix the percolation probability pB . pB

must be a real variable in the interval between 0 and 1
The task is to generate many configurations to gather statistics. We write

down a loop so that we generate mcsMax configurations. Within the loop two
tasks have to be handled: the generation of a configuration and the analysis
of the configuration.

1.4 Problems 9

A configuration is obtained by setting a lattice either to 0 or to 1 de-
pending on the outcome of the result of a drawing from the set of uniformly
distributed random numbers r. The random number is compared to the fixed
probability pB . Suppose pB is set to 1. No matter what the outcome of the
drawing is, we need to set the occupation variable to 1. Hence comparing the
r to pB we always have to set the lattice site to 1 if r is less than pB . If pB

is set to 0 then indeed no r will be less than pB .
The question at this point is how to run through the lattice. Since there

are no dependencies between the sites on the lattice we can run through the
lattice which ever way we like. The simplest choice is to cycle through the
lattice.

Next we need to check for the presence of a cluster that spans the lattice
either from top to bottom or from left to right. We assign this problem to a
function that returns the results as either 0 in the case of no connectivity or
1 in the case of connectivity.

Finally we need to perform the averaging over the independent results
of the sampling. Remember that due to the finiteness of the lattice we can
expect to find configurations that have a connectivity even though in the
thermodynamic limit and averaging of over all possible configurations this
would not the case.

1.3.3 Testing the program

Finally we must test our program. Generally we have no results available
that would help us to compare our simulation result to and find out whether
the program is correct or still carries a bug. We must check the program by
looking at special cases to make reasonably sure that the program is working
correctly.

We assume that the random number generator has already been checked
(see remarks to this point in the later sections!). The first obvious checks are
the special cases of pB = 0 and pB = 1. Our averaged result must always be
0 (pB = 0) and 1 (pB = 1). Next we can generate specific configurations by
explicitly setting lattice sites commenting out the setting of lattice using the
random numbers.

1.4 Problems

1. Use the supplied computer program for the two-dimensional site-percolation
problem to compute the cluster size distribution as a function of p. Note
that the moments of the cluster size distribution are related to observ-
ables as the cluster susceptibility χ =

∑′

s sn(s), where the prime denotes
that the largest cluster is to be omitted from the summation.

10 1. Introductory Examples

2. Bond Percolation
In this chapter we were concerned with the site percolation problem.
Equally well we can study the bond percolation problem. Instead of oc-
cupying the lattice sites we connect sites by choosing a probability p and
if the outcome of a comparison with a random number is positive, we oc-
cupy the bond between the selected two nearest-neighbour sites. Revise
your program from the previous exercise for this problem. Do you think
that the site and the bond percolation problem are equivalent?

3. Random Walk
Consider a lattice with coordination number q on which a particle can
move. The particle is only allowed to go from one site to the nearest
neighbour site. Start from a site which is considered the origin. Choose
a random number which determines to which of the q nearest neighbour
sites the particle moves. Continue to do so for n moves. To establish the
diffusion law, develop an algorithm which generates walks of length n.
Determine the mean-square displacement for each walk and average the
result. Plot the mean-square displacement as a function of n.

4. Growth of Clusters (Eden cluster [?])
One starts from one occupied site on a lattice as a seed for a cluster.
At every “time step” one additional randomly selected perimeter site is
occupied. A perimeter site is an empty neighbour of an already occupied
site. Write a computer program to simulate the growth of the cluster as
a function of “time”.

5. Aggregation
A nice example of a direct method is the generation of aggregates. Take
a lattice with one or more sites of the lattice designated as aggregation
sites. Draw a wide circle or sphere around the potential aggregation sites.
Introduce a new particle at a randomly picked site on the circle or sphere.
The particle is now performing a random walk (cf. previous exercise)
until it walks outside the valid region, or moves to one of the surface
sites of the aggregation site. If the particle has come to the surface site
of the aggregation site, it sticks, and the potential aggregation surface
has grown. Inject a new particle into the valid region and continue until
the aggregate has grown substantially. The valid region is then changed
to give room for the walker to move. Why is this a direct simulation of
aggregation? Can you invent variations of the problem?

