
2. Probabilities, Distributions and Random
Numbers

2.1 From Numbers to Random Numbers

A sequence of numbers that is random plays a very important role for the
stochastic simulation methods and for the deterministic methods. For the
stochastic simulation methods we need random numbers for example to de-
cide whether a lattice site is considered occupied or un-occupied (c.f. previous
chapter). For deterministic simulation methods we need to set the initial mo-
menta of particles. Both examples show that random numbers are needed
that are distributed according to a prescribed distribution. In the first exam-
ple the distribution is uniform. Each random number has the same a priori
probability. In the second example the momenta should obey a Boltzmann
distribution.

In general, we need numbers x ∈ [a, b] with a probability density f(x)
such that

Prob[x1 < X < x2] =
∫ x2

x1

f(x)dx (2.1)

with the corresponding distribution

F (x) = Prob[X < x] =
∫ x

a

f(x′)dx′ (2.2)

Our task is to device algorithms that produce numbers in the given in-
terval that are in some sense random irrespective of the distribution.

We certainly can not use a ”physical” random number generator. Consider
testing a program where possible problems can not be located due to the non-
reproducibility of the outcome of a run of the program under given initial
conditions. Also, we need to be sure that the random numbers are generated
at a constant and fast enough rate.

A random number generator should produce numbers that appear ran-
dom, i.e., passes the common statistical tests for randomness and the se-
quence of numbers must be reproducible. The underlying algorithm will be
deterministic, and we can only hope for “pseudo-random numbers”. Since the
random numbers come from a deterministic algorithm, we can always device
a statistical test where the specific algorithm fails to appear random.



12 2. Probabilities, Distributions and Random Numbers

A more technical issue is the portability of the random number generator
from one operating system to the another. Also we need to consider the
portability from one processor type (for example from a 64-bit machine to a
128-bit machine) the another.

Intuitively, we can list a number of criteria that a sequence of numbers
must fulfil to pass as a random number sequence:

• unpredictability,
• independence,
• without pattern.

These criteria appear to be the minimum request for an algorithm to produce
random numbers. More precisely we can formulate:

• prescribed distribution,
• uncorrelated,
• passes every test of randomness,
• large period before the sequence repeats (see later),
• sequence repeatable and possibility to vary starting values,
• fast algorithm,
• portability.

The most important desired properties are, of course, the statistical prop-
erties. Unfortunately there is no generator available without fault, but the list
of known properties is growing. This reduces the risk of applying a particular
bad one in a simulation.

Computational efficiency is extremely important. Simulation programs
may require huge numbers of random numbers, so the computation of a
single random number must be very fast.

2.2 Distributions

A very simple test of the statistical properties of an empirical distribution is
to compute the moments of the distribution. Here we apply this to generated
random numbers. Assume that we generate n numbers. We divide the interval
of the random numbers into bins and count the number of occurrences of
numbers that belong to a given interval. This produces a histogram counting
the number of observations for each of the bins (frequencies). Dividing all
frequencies by the total number of observations n gives the probabilities for
the bins. For the random numbers we want the distribution F (x) to be the
same for every interval [x, x + dx]. A distribution of random numbers where
all numbers have the same probability is called a uniform distribution. We
define the first and the k-th moment of a distribution as



2.3 Generating Random Number Generators 13

< x > =
1
n

n∑
i=1

xi (2.3)

< (x− < x >)k > =
1
n

n∑
i=1

(xi− < x >)k k = 2, ... (2.4)

Let us assume that the numbers xi are normalized to the unit interval, then
we must have 1/2 for the first moment or the expectation value. Because of
the symmetry of the uniform distribution all odd moments must vanish. We
can define the skew of a distribution of numbers as

skew =
< (x− < x >)3

[< (x− < x >)2 >]3/2
. (2.5)

The skew reflects how far a distribution departs from being symmetric. Also
of interest is the deviation from the normal (standard or Gauss) distribution.
This is measured by the excess

excess =
< (x− < x >)4 >

[(< (x− < x >)2 >]2
− 3 . (2.6)

This quantity will be useful for us later when we want to study phase transi-
tions. There, the departure from the gaussian distribution signals the phase
transition, and the location can be determined using the excess.

2.3 Generating Random Number Generators

The most common generators use very basic operations and apply them re-
peatedly on the numbers generated in previous steps. We formulate this as a
recursion relation

xi+1 = G(xi), x0 = initial value , (2.7)

where we have made explicit only the dependence on the immediate pre-
decessor. The most important representatives of this class of generators are
the

• linear congruential,
• lagged Fibonacci,
• shift-register, or a
• combination of linear congruential.

For the moment we consider generator functions G, that produce numbers
in a given interval, or a model set with a uniform distribution. A uniform
distribution is one, where all possible numbers in a given interval occur with
the same probability.



14 2. Probabilities, Distributions and Random Numbers

A very simple generator is constructed using the modulo function.

G(x) = (xa + b) mod M (2.8)

This function produces a dilatation, translation and a folding back into the
interval. Random number generators based on this function are called linear
congruential generators or LCG(a,b,M) for short. If we assume integers as
the set on which the modulo function is defined, then for example, the range
of integer numbers for a 32-bit architecture is at most M = 231 − 1. Here we
assume that one bit is taken for the sign of the number. Then the numbers
range at most from 0 to M − 1. Of course we can map these onto the real
interval between 0 and 1, recognizing that this is an approximation to the
real-valued random numbers.

The choice of the parameters a, b and M determine the statistical prop-
erties and how many different numbers we can expect, before the sequence
repeats itself. The period can be shown to be maximal, if M is chosen to be
a prime number. Then the whole range of numbers can occur.

Here we only consider modulo generators with b = 0. Such generators
are called multiplicative, and the short form MLCG(a,M) is used for such
generators. These are the most commonly used, since one can show that
additive generators, i.e. generators with b zero have undesirable statistical
properties.

The choices for the parameter a are manifold. For example a = 16807,
630360016 or 397204094 are possible choices with M = 231 − 1. There are
particular bad choices for the multiplier a. For example a = 65539 is such
a bad choice. The decision, whether a particular value for a is a good or
bad choice, with respect to the statistical properties, can be made based
on theorems that limit the possible choices for a. Also some statistical tests
exclude values for a. Here we do not have space to go into these details and
the interested reader is directed to the literature.

In the following, we list some modulo generators that have reasonably,
within the known limitations, good properties

Recursion Relation Period
xi+1 = 16807xi mod (231−1 − 1) 231 − 1
xi+1 = 69069xi + 1 mod (232) 232

xi+1 = 1664525xi + 1 mod (232) 232

The introduced generator is easy to implement on a computer. Using, in
its straightforward form, the intrinsic modulo function, the algorithm reads

ix = MOD(a * ix, m)

The MOD function has the advantage of transportability of the pro-
gram from one machine to another. Its disadvantage is the computational
inefficiency. Many operations are carried out, among them the most time-
consuming, the division.



2.3 Generating Random Number Generators 15

Another type of generator used very frequently in simulations is the lagged
Fibonacci generator . The lagged Fibonacci generator, symbolically denoted
by LF(p,q,⊗) with p > q, is based on a Fibonacci sequence of numbers with
respect to an operation which we have given the generic symbol ⊗. Let S
be the model set for the operation ⊗, for example the positive real numbers,
the positive integers, or the set S = 0, 1. The binary operation ⊗ computes
a new number from previously generated numbers with a lag p

xn = xn−p ⊗ xn−q , p > q . (2.9)

To start the generator we need p numbers. These can be generated using for
example a modulo generator. The advantage of the lagged Fibonacci gener-
ator, apart from removing some of the deficiencies that are build into the
modulo type generators, is that one can operate on the level of numbers or
on the level of bits. For example, we can construct a generalized shift-register
generator GFSR(p,q,⊗), where the operation is interpreted as the exclusive
or, which acts on every of the 32 bits in a computer word. This generator
is also known under the name of R250. The generator R250 is the generator
used in many of the simulation programs accompanying this book.

Let us turn now to the generation of non-uniform distributions. First we
look at the normal or Gaussian distribution. Sampling such a distribution
is computationally rather inefficient compared to the algorithms described
above. But in the applications described in this book, the generation of a
Gaussian distribution is not time critical.

Typically algorithms generating non-uniform variates do so by converting
uniform variates. In its most straightforward form a normal deviate x with
mean < x > and standard deviation σ is produced as follows [?, ?].

Let n be an integer, determined by the needed accuracy. Then

1. sum n uniform random numbers ri from the interval (−1, 1):

sn =
n∑

i=1

ri

2. and let x =< x > +σsn

√
3.0/n

For some purposes the simple method will be sufficient, but if good ac-
curacy is needed the above algorithm should be avoided. More efficient and
accurate is the idea of von Neumann [?] with the modification of Forsythe [?].

Let G(x) be a function on the interval [a, b] with 0 < G(x) < 1 and f(x)
the probability distribution f(x) = a exp [−G(x)], where a is a constant.

1. Generate r from a uniform distribution on (0, 1)
2. Set x = a + (b− a)r.
3. Calculate t = G(x).



16 2. Probabilities, Distributions and Random Numbers

4. Generate r1, r2, ..., rk from a uniform distribution on (0, 1) where k is
determined from the condition

t > r1 > r2 > ... > rk−1 < rk

If t < r1, then k = 1.
5. If k is even, reject x and go to 1; otherwise, x is a sample.

Again, the method converts uniform random numbers into non-uniform
ones.

An interesting method for generating normal variates is the polar method [?].
It has the advantage that two independent, normally distributed variates are
produced with practically no additional cost in computer time.

1. Generate two independent random variables, U1, U2 from the interval
(0, 1).

2. Set V1 = 2U1 − 1, V2 = 2U2 − 1
3. Compute S = V 2

1 + V 2
2 .

4. If S ≥ 1, return to step 1.
5. Otherwise, set

x1 = V1

√
−2 ln S/S (2.10)

x2 = V2

√
−2 ln S/S (2.11)

2.4 Testing Random Numbers

A number of statistical tests have been devised to check for the properties of
random number generators. To name just a few prominent tests

• χ2,
• Kolmogorov-Smirnov,
• correlation,
• run and
• visual test.

The statistical tests are tests how well the empirical distribution, i.e., the
generated sequence, fits a test distribution. Of these, we will not describe any
and direct the reader to the literature. We shall discuss, however, the run and
the lattice test.

The run test tests whether an empirical distribution has monotone de-
creasing or increasing subsequences and confronts these with the expectation
for their occurrence. Let us assume that we want to test for monotone in-
creasing subsequences. Such a test is called a run test up, otherwise run test
down. A run of length r of a sequence x = (x1, ..., xn) is a maximal strictly
monotonically increasing (decreasing) subsequence (xi, ..., xi+r−1), i.e.,



2.5 Problems 17

xi−1 > xi < ... < xi+r−1 > xi+r (2.12)
with x0 positive infinite and xn+1 negative infinite.

The expectation for the distribution of runs is derived from a simple
permutation argument and will not be reproduced here. For large n, one can
show, that the probability to get a run of length r is given by r/(r + 1)!,
hence

1/2, 1/3, 1/8, 1/30, 1/144, ... (2.13)
The way the test is derived shows that this tests for correlation in the

generated sequence. The expected probabilities for the sequences reflect the
independence from correlation.

A very easy test is lattice test. Suppose we have to visit the sites of a
simple cubic lattice L3 at random. The three coordinates are obtained from
three successively generated random numbers r1, r2, r3 ∈ (0, 1), as

ix = rz ∗ L + 1
iy = rz ∗ L + 1
iz = rz ∗ L + 1

where ix, iy, iz are integer variables, implying a conversion of the real
right-hand sides to integers, i.e., removal of the fractional part. If there are
no correlations between successively generated random numbers all sites will
eventually be visited. However, only certain hyperplanes are visited if corre-
lations exist. This was most impressively demonstrated first by Lach [?].

2.5 Problems

1. Generate a sequence of random numbers with parameters you think are
appropriate (not the ones listed above!). Visualize this sequence. Check
whether the distribution is uniform.

2. Generate a sequence of random numbers with parameters you think are
appropriate (not the ones listed above!). Store this sequence and com-
pute the moments of the distribution. Check whether the distribution is
uniform. Compare your findings with a graphical output (see for example
the section on correlation).

3. For the shift-bit-register generator generate n sequences of length m.
What will be the distribution of the expectation values?

4. Use the run test to test different random number generators. Compare
your findings with a visual analysis and an analysis of the moments.

5. Can you construct a modulo generator which gives an expectation value
of 1/2, but all other moments do not correspond to the uniform distri-
bution?


