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1. Stochastic Methods

This chapter is concerned with methods which use stochastic elements to
compute quantities of interest. These methods are not diametrically opposed
to the deterministic ones. Brownian dynamics provides an example where
the two methods are combined to form a hybrid technique. However, there
are also inherently stochastic methods, such as the Monte-Carlo technique.
An application of this simulation method was presented in the introductory
chapter. The stochastic methods are built on concepts developed in proba-
bility theory and statistical mechanics. They allow not only a treatment of
problems apparently probabilistic in nature, like the random walk, but also
problems which are on the face deterministic. The scope of applications is
broad, making it a flexible and exciting tool in simulational physics. One of
the key elements in these types of simulations is the concept of the Markov
process or Markov chain.

1.1 Monte-Carlo Method

In this section we outline the principles behind the Monte-Carlo method.
In the subsections specific methods for different thermodynamic ensem-
bles will be presented and how they are applied to problem from statis-
tical mechanics.

1.1.1 Simple Sampling: Random Walks

Perhaps the most straight-forward application of probability can be seen in
the random walk model. This model serves as a second introduction to sample
techniques for configurations that one uses in stochastic simulation methods
beside the percolation model that we introduced in the first chapter of this
book.

We assume a lattice. For simplicity we take a simple square lattice. On this
lattice a particle or walker is placed. The walker regards this initial position
as the origin. The walker draws a random number and decides, according to
the drawn random number, to go to a new position on the lattice. The new
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position must be one of the nearest neighbours, and each of the neighbours
has the same probability to be visited. Once he is at the new position, the
walker regards this position as his new origin. In other words, he immediately
forgets where he came from. Every step is made as if it is the first step. All
steps are then independent of each other. Schematically a walk of length 10
is shown in Figure 1.1.

Figure 1.1. Example of a conformation of a random walk, the underlying lattice
and the construction of the walk

It is very easy to simulate a random walk on the computer. The following
program segment generates such random walks.

Simple Sampling of Random Walks Example 5.1

It is assumed that in the array random are stored numbers which are uni-
formly distributed in the interval (0, 1). A random number from the array is
then multiplied by 4 and converted to an integer value. This integer value can
either be 0, 1, 2 or 3 labeling the four possible directions or nearest neighbours
on the square lattice. The numbers 0, 1, 2 and 3 are uniformly distributed as
long as the numbers in the array random are so distributed. Depending on
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the direction the random number points to, the walker occupies the appro-
priate position on the lattice by increasing or decreasing the x or y variable.
The variables xn and yn hold the new position of the random walker.

/* ---- Choose a new nn site ---- */
i = floor(random[index++]* 4.0);
switch (i) {

case 0: xn = x-1;
yn = y;
break;

case 1: yn = y-1;
xn = x;
break;

case 2: yn = y+1;
xn = x;
break;

case 3: xn = x+1;
yn = y;
break;

} /* ---- switch i ---- */

Let us assume that the walker performed N steps. This constitutes one
realization of a random walk. We may now be interested in computing prop-
erties of such a walk. From just one realization we cannot draw any conclusion
since the walk may be atypical. We need to generate many walks, calculate
for every walk the desired property and then average over the results. The
point which we want to make is that the generation of the samples, i.e., all
the realizations of random walks are generated independently. Let Ai be the
observable property computed for the i-th realization of a random walk. We
define the average, or expectation value for the observable A, denoted by
<A>, as the arithmetic mean over all Ai

<A> =
1
n

n∑
i=1

Ai , (1.1)

just as we did for the random numbers to calculate the first moment of the
distribution. The distribution of the random walks is uniform.

One property we may want to compute is the end-to-end distance RN of a
walk of length N . The end-to-end distance is the Euclidean distance between
the starting point and the end point of a walk and define

R2
N =< [x(0)− x(N)]2 + [y(0)− y(N)]2 > . (1.2)
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Here again the average means that we take all walks that we generated into
account and all have the same statistical weight. But what is the error in
the quantity. For this we need to compute the fluctuations or the expected
deviation from the mean value

∆(RN , n) =< R2
N > − < RN >2 . (1.3)

The error depends on the number of observations (n) and the length of the
walk (N). We may be inclined to think that the error tends to zero if we
make the length of the walks longer and longer, suggesting that the length
N of the walk has the same meaning as the volume of a system. Recall that
for an infinite system a single observation suffices to obtain the observable.

Note that the error for the end-to-end distance is computed as the second
central moment, which we defined earlier. Our notation of the angular bracket
for the average quantities then implies that there is distribution for the values
of the end-to-end distance and the radius of gyration.

For the simple random walk it is easy to show that the end-to-end distance
scales as

RN ∝ Nν ∝ N1/2 . (1.4)

Let us recapitulate our findings so far. From the random numbers we ob-
tained a configuration, here a random walk. This configuration was generated
independently from previous configurations to make a sample of configura-
tions. We call this a sample generated by the simple sampling method.

At this point it is clear why we need uncorrelated random numbers. We
need the absents from correlation to generate a true random walk. Every
correlation in the random numbers must appear as a bias in the walks. This
bias carries over to the observables computed form a simulation.

We modify the above random walk model by requiring the walk avoids
itself. Not only is the random walk not allowed to immediately fold back onto
itself, but also all sites which are occupied by the walk can not be accessed
again. While in the pure random walk model all steps are independent of each
other, here the future steps, with this modification, depend on the past. The
walk immediately after the first step builds spatial correlation. A random
walk with this modification is called a self-avoiding random walk (SAW).
In the following we have written down a simple sampling program for the
self-avoiding walk model.

Simple Sampling of Self-Avoiding Random Walks Example 5.2

In this example of program code we show the main loop of a simple
sampling algorithm of self-avoiding random walks. The algorithm to perform
the basic steps of the walker is the same as for the random walk. To implement
the self-avoidance, we have an array (w) which mimics the underlying lattice.
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Not a SAW SAW

Figure 1.2.

Each site the walker goes to will be labeled by the number the walker is
assigned to. This allows several walkers to travel the lattice without resetting
it. At each step the algorithm checks in the array w whether the walker has
visited the site. If so, the walk terminates signalled by the flag occupancy.
For a full walk we calculate the radius of gyration.

while ( sample < sample_size ) {

/* ==== Reset the walker to the origin ==== */

w[0][0] = xc;
w[0][1] = yc;
x = xc;
y = yc;
l = 0;
occupancy = 0;
walk++;

return_code = r250( N,ran,mf);

while ( (l < N) && (occupancy == 0) ) {
d = ran[l] * 4;
switch (d) {

case 0: x++;
break;

case 1: y++;
break;
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case 2: x--;
break;

case 3: y--;
break;

}

if ( ( x < 0 ) || ( x == L ) || ( y < 0 ) || ( y == L ) ) {
/* Random walker not on the lattice */
exit(-1);

}

if ( g[x][y] < walk ) {
g[x][y] = walk;
l++;
w[l][0] = x;
w[l][1] = y;
occupancy = 0;

}
else {

occupancy = 1;
}

}

/* ==== Now check if a SAW was generated. If yes, then ==== */
/* ==== we do the analysis, else we must try again ==== */

if ( l == N ) {
/* ---- we can compute the end-to-end distance etc. ---- */

x = xc - w[N-1][0];
y = yc - w[N-1][1];
end_to_end += x*x + y*y;

cmx = 0;
cmy = 0;
for (i=0; i < N; i++) {
cmx += w[i][0];
cmy += w[i][1];

}
cmx /= N;
cmy /= N;
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rad = 0;
for (i=0; i < N; i++) {

x = cmx - w[i][0];
y = cmy - w[i][1];
rad += x*x + y*y;

}
radius_of_gyration += rad;

sample++;
}

}

Performing the simple sampling simulation it becomes immediately ev-
ident that we have a problem with the simple sampling technique for the
self-avoiding random walk model. As we increase the number of steps the
walker should travel, it becomes harder and harder to find a walk. In almost
all cases the walk terminates earlier because there is a violation of the self-
avoiding condition! This shows that the simple sampling, even though being
the simplest and perhaps even most powerful method has clear limitations.

The way out of the disastrous dependence of the probability to generate
a walk of length N , once N is large, is to start with a walk that fulfils
the requirement of self-avoidance. We can then generate a new walk from the
already present one. We follow up on this idea when we discuss the importance
sampling techniques.

Lets assume that we have solved the problem of generating large self-
avoiding random walks. What we will find is that this type of a random walk
does not fill space because of its spatial correlation. The end-to-end distance
scales as

RN ∝ Nν ∝ N0.59 . (1.5)

The fractal dimension df , is equal to 1.69, i.e., less than the space dimension!

1.1.2 Correlated Sampling

One of the key features of the simple sampling is that every state is gener-
ated completely independent from the previous state. For the examples of
percolation and random walk that worked nicley. For the self avoiding ran-
dom walk we saw that this methods fails. Assume that we have generated a
state and lets keep the self-avoiding random walk as our example. Lets say
the generated state would be a straight line. The key idea is to develop a
new conformation of the walk incorating the, self avoiding walk condition,
from the existing conformation. One possible solution is the slithering snake
algorithm.
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Figure 1.3. Self avoiding random walk

Algorithm: Slittering Snake

1. Assume that we have generated a random walk
2. Choose one of the end points and delete this point
3. Add the point to the opposite end choosing a random direction

The sequence of conformations of chains that we generate is x1, . . . , xN

and is correlated. It follows that the probability to get the above sequence is

P (x1, x2, x3, . . . , xn) = P (x2, . . . , xn|x1)P (x1)

= P (x3, . . . , xn)P (x2, x1)P (x1)

and by recursion

P (x1, x2, . . . , xn) = P (x1)
n∏

i=1

P (xi|xi−1) (1.6)

1.1.3 Sampling a Distribution, the Partition Function

So far we concerned ourselves with the generation of configurations using the
simple sampling technique and started to venture into the correlated sam-
pling. For this we needed, at least for the examples presented here so far, only
uniformly distributed random numbers. This situation arose because all the
configurations of the examples had the same probability or the same weight.
Every configuration counted the same in the averaging process irrespective of
the nature of the configuration. Let us turn to a situation were we are given
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Polymer Chain Random Walk

Figure 1.4.

a Hamiltonian H. The Hamiltonian depends on the variables x that describe
the degrees of freedom of the system. These can be the position of particles
in space, angles, spin orientations etc. If the energy is conserved all states
x have the same a priori probability. We could thus simulate such a system
generating independent configurations with the fixed energy E. This imme-
diately raises the questions: How simple is it to generate a configuration with
given energy and would it be better once we have a configuration with given
energy to change the configuration leaving the energy invariant? The idea to
generate one configuration from the other is appealing. Indeed in the previ-
ous chapter we have learned methods to generate a new configuration from
the immediate predecessor by integrating the equations of motion leaving the
energy invariant!

Let us take again a look at the random walk. We may look at the random
walk also as a model for a polymer chain. Each site of chain corresponds to
a monomer unit, or an atom of the polymer chain and the edge connecting
two sites corresponds with a bond in the polymer chain. Schematically this
is shown in Figure 1.4.

We could displace a monomer unit from its original position to obtain a
new configuration or conformation of the chain, once all monomers were given
the chance for a displacement. This approach also adds to the sampling a time
dimension. The polymer, or in general a configuration, evolves from an initial
configuration. The time evolution of the configuration is then governed by the
method to update the configuration. However, as we will derive in the next
section, this evolution is not entirely stochastic. It is governed by a master
equation giving meaning to the notion of time in a probabilistic simulation.

Let us come back to the probabilities for configurations. If all configura-
tions with a given energy E have the same probability, then we can write
down the sum or the integral over all possible states under the constraint of
a fixed energy

Z =
∫

Ω

δ(H(x)− E)dx . (1.7)

The integral extends over all possible configurations the system can attain.
The space of all these states is called the configuration space Ω or also called
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the state space. The partition function Z has all the information needed to
describe the statistical mechanical behaviour. What we have written down is
the partition function for the micro-canonical ensemble.

If the energy is not a conserved quantity but the temperature T is held
fixed, the distribution of the states of the system, i.e. the probability for
the occurrence of a configuration in configuration space, is governed by the
Boltzmann distribution

P (x) ∝ e−H(x)/kBT (1.8)

and the partition function is given by

Z =
∫

Ω

e−H(x)/kBT dx . (1.9)

This is the partition function for the canonical ensemble. kB is the Boltzmann
constant.
Each state of the system occurs with a specific probability. If we want to
perform a simulation of a system governed by a Hamiltonian in the canonical
ensemble (constant temperature) we need to devise a method to generate
states that follow the Boltzmann distribution. This is much like the genera-
tion of random numbers. For these we required that they follow the uniform
distribution. Here the distribution is non-uniform and has a non-trivial form.

We are then required in a simulation to generate states or configurations
which follow a distribution other than the uniform. To pave the way to the
Monte Carlo method, let us see how we can generate a distribution using
uniformly distributed random numbers. Let

f(x) ∝ exp{−G(x)} (1.10)

be the distribution that we want to generate. G(x) is some function in
the open interval (0, 1). We obtain the distribution by devising an accep-
tance/rejection mechanism based upon uniformly distributed random num-
bers. For this we draw a random number from a uniform distribution. We
rescale this number such that the number is in the interval over which G is
defined. Let t = G(x), where x is the number from the uniform distribution.
Earlier in this chapter we considered the occurrence for a run down or a run
up in a sequence of random numbers. We use a similar concept to accept
or reject a drawn number x to be a sample from the distribution f . Gener-
ate k numbers from a uniform distribution where k is determined from the
condition

t > x1 > x2 > ... > xk−1 < xk . (1.11)

If k is even reject x and start with a new x. If k is odd, we have a sample
from the desired distribution. Using this method it is easy to generate for
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example random numbers that are distributed with a maxwell distribution
or any other distribution.

1.1.4 Introduction into the Importance Sampling Method

How can we generate states with a specified distribution? In the previous
section this essential question was answered for the case of only one variable.
If the number of variables gets larger then the approach given in the previous
section becomes prohibitive. We must devise a new approach that samples
the states from the configuration space.

In the Monte Carlo method one calculates the expectation value for an
observable A by computing the average with respect to an appropriate distri-
bution. The distribution function is determined by the statistical mechanical
ensemble. Assume that the system is described by a Hamiltonian H(x) with x
being the degrees of freedom of the system. For the canonical ensemble with
fixed temperature T , volume V and number of particles N the expectation
value for an observable A is given by

<A> =
1
Z

∫
Ω

A(x)e−H(x)/kBT dx (1.12)

where

Z =
∫

Ω

e−H(x)/kBT dx . (1.13)

Here Ω denotes the phase space, i.e., all configurations that are available to
the system. If the number of configurations of the system under the given
constraints is very large, the task of evaluating (1.12) becomes formidable
and one has to resort to sampling. Sampling here means that we want to pick
up mainly those contributions to the integral that make the largest impact.
If we were to randomly sample the available phase we would, for the most
part, obtain states that give a very small contribution to the expectation
value. We cannot apply simple sampling to a distribution of states that is
sharply peaked. To sample the major contributions of the integrant to the
integral (1.12) one constructs a Markov chain of states where each state or
configuration is generated from the previously generated configuration:

P : x0, . . . , xn (1.14)

with xi ∈ Ω. The state xi is derived from the state xi−1. This is not done
deterministically as for the integration of motion of the equations of motion
in Newtonian dynamics, but probabilistically. The state xi followed the state
xi−1 with a probability. There is a transition probability
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W (xi, xi−1) (1.15)

from one state to the other. If the system is in state xi−1, and it is so
with a probability P (xi−1), then the state changes to the state xi with the
probability W . This evolution seems to be quite different from what we have
learned in the preceding chapter. There, the evolution was deterministic.
Given the initial conditions the entire evolution of the states of the system is
determined for ever.

To make the approach more transparent we formulate again the main
points. In the simple sampling method we generate the states directly from
the distribution if it is simple enough to be known a priori. Here, we use a
generating process. The process generates states, one from the other, ensuring
that the states eventually have the correct distribution.

One may consider the Markov chain a walk or path through phase space.
The label k, which sequences the states in the Markov chain, can be thought
of as time. Then starting from initial state (x, t=0) the Monte Carlo procedure
generates time ordered states

P : (x, t=0), . . . , (x, t=n) . (1.16)

Due to the construction the states will ultimately be distributed in some way.
What we need to specify is that the distribution of the states is guaranteed to
be the distribution in thermal equilibrium. Before developing the necessary
conditions to ensure that the transitions from one state to the next yield the
correct distribution, let us dwell on the idea that we generate a trajectory in
configuration space.

The definition for the time-dependent average of an observable is

<A(t)> =
∑

x

A(x)P (x, t) , (1.17)

where P (x, t) is the time-dependent probability density for the states. It can
be shown that

<A(t)> =
1
t

∑
x

A(x(t)) , (1.18)

i.e., one may average over the quantity one is interested in along a trajectory
generated by the Monte Carlo method. This is similar to the trajectories gen-
erated in molecular dynamics simulations described in the previous chapter.

The Markov chain is constructed such that the states are distributed as
in thermal equilibrium, i.e., here with the canonical distribution

P (x) ∝ e−H(x)/kBT . (1.19)
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If one has constructed transition probabilities from one state to another which
give the distribution

dλ =
1
Z

e−H(x)/kBT dx (1.20)

one obtains for the observable A

<A> ' 1
n

n∑
k

A(xk) (1.21)

i.e., again a simple arithmetic average. However, we have not performed a
simple sampling but an importance sampling. This is because the states that
we use to sample the observable are generated with the correct distribution!

Rests to define how one has to construct the transition probabilities such
that we are guaranteed that the states that we generate follow the desired dis-
tribution. Let W (x′, x) denote the transition probability to move from state x
to the state x′. A sufficient condition to reach equilibrium and that the states
are distributed according to the desired distribution P (x) is the microscopic
reversibility or detailed balance

W (x′, x)P (x) = W (x, x′)P (x′) (1.22)

Here P is the equilibrium distribution. This condition is very much like the
time reversibility in the newtonian equation of motion! It alone does not yet
guarantee that the states are distributed in the correct way. We also require
that every state can be reached! We do not want the available phase space to
separate into disjoint parts. Further, once in a state, the probability to jump
to any state must be one. That is to say, the probability to jump is a sure
event.

From the above condition we can immediately derive the functional form
of the transition probabilities, given the equilibrium distribution. The transi-
tion probability must have two parts. There is one part that proposes a new
state. A new state x′ is proposed with the probability p0

x,x′ . The other part of
the transition probability deals with the acceptance of the proposed change.
This is an important point. We propose a change of the state with a certain
probability and the proposition is accepted with a probability that we call
ax,x′ . We define the transition probability W as

W (x′, x) = p0
x,x′ax,x′ if x 6= x′ (1.23)

W (x, x) = p0
x,x +

∑
y 6=x

p0
x,x(1− ax,x′) (1.24)

Form this definition and the condition of the detailed balance we get
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ax,x′

ax′,x
=

p0
x′,xP (x′)

p0
x,x′P (x)

(1.25)

for the only interesting case that the two states are not equal. Hence we can
define ax,x′ as a function F with the argument

z :=
p0

x′,xP (x′)

p0
x,x′P (x)

(1.26)

ax,x′ = F (z) (1.27)

to find that F needs to satisfy the following relation

F (z)
F (1/z)

= z (1.28)

Any function satisfying this relation, together with the obvious requirement
that every state can be reached and that we jump somewhere, guarantees
that the equilibrium distribution P will be reached and all our generated
states in the simulation eventually follow this distribution.

1.1.5 Microcanonical Ensemble Monte-Carlo Method

This section introduces one possible algorithm to perform simulations at
constant energy and as an example the two-dimensional Ising model is
treated using this algorithm.

The kind of systems we would like to study with the microcanonical
Monte-Carlo technique are those described by a HamiltonianH. In the micro-
canonical molecular-dynamics method the system has state variables (x, p)
representing the generalized coordinates x and the corresponding conjugate
momenta p. To perpetuate the system in phase space the equations of mo-
tion are set up and solved numerically. For the microcanonical Monte-Carlo
simulation we drop the kinetic energy term from the Hamiltonian. To com-
pute properties of the system we thus cannot use the equations of motion.
The approach taken is to evaluate the properties using the partition function
Z. The dynamics will not reflect the true intrinsic system dynamics but the
dynamics generated by a Markov chain. The configurational properties are,
however, the same as those obtained by the MD method.

For a conservative system as considered here with a fixed number of par-
ticles N in a given volume V , the microcanonical ensemble distribution is
expressed by a delta function, so that the partition function is



1.1 Monte-Carlo Method 15

Z =
∫

Ω

δ(H(x)− E)dx (1.29)

where E is the fixed energy of the system. The only configurations counted
are those where the Hamiltonian is constrained to E. Using the partition
function, quantities are computed as follows. With any observable A is asso-
ciated a function A(x) which depends on the state of the system. The usual
assumption is that the observable A is equal to the ensemble average

〈A〉NV E =
1
Z

∫
Ω

A(x)δ(H(x)− E)dx (1.30)

Dummy

Figure 1.5. Schematic representation of a random walk on a constant energy
surface in phase space

In the microcanonical ensemble, all states have a priori equal weight, as
expressed by the delta function in 1.30. The general idea of the Monte-Carlo
method for computing the integral on the right-hand side is to sample the
available phase space of the system and carry out a summation. Similarly to
the microcanonical MD technique, an algorithm must be constructed such
that the system travels the constant energy surface in an ergodic manner.
In the microcanonical MC method the system moves on the surface guided
by a random walk (Fig 1.5) since all states have a priori equal weight. If the
random walk is simple and not, for example, a self-avoiding random walk,
where each state depends on the history, then a Markov chain is defined.

Suppose that somehow a state x is generated such that W (x) = E. Once
on the surface a sampling algorithm has to produce further states on the
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surface. Assume that we relax the surface restriction a little and allow for ε
variations in the region E−ε < H(x) < E+ε away from the surface. We may
do so by introducing an extra degree of freedom [4.53-55], called a demon,
with energy ED, into the partition function

Z =
∑

x

∑
ED

δ(H(x) + ED − E) (1.31)

The demon plays a role similar to the kinetic energy term in molecular
dynamics. It produces changes in the configuration by travelling around the
system and transferring energy. Thereby the demon creates a random walk
of the system on the surface. We must, however, restrict the demon’s energy,
otherwise it will absorb all the energy! Such a restriction may, for example,
limit the demon’s energy to positive values. Algorithmically the outlined pro-
cedure looks as follows.

Algorithm NVE Monte-Carlo

1. Construct a state such that H(§) = E .
2. Set the demon energy ED (for example, ED = 0).
3. Choose a part of the system.
4. Change the local state of the system so that x→ x′

5. Calculate the energy change produced, i.e., ∆H = H(x′)−H(x)
6. If the energy is lowered, accept the change, set ED ← ED − ∆H and

count x′ as a new configuration. Return to step 3.
7. Otherwise, accept the change only if the demon carries enough energy,

i.e., ED − H > 0. In this case ED ← ED − ∆H and count x′ as a new
configuration.

8. Return to Step 3.

The algorithm guarantees with Steps 6 and 7 that the system relaxes to
thermal equilibrium. In addition, Step 7 also ensures the positivity of the
demons energy.

Conceptually we may view the demon as a thermometer. Indeed, the
demon can take up or lose energy as it is successively brought in contact
with parts of the system. Initially, the demon has an arbitrary distribution.
The system acts as a reservoir and thermalizes the demon. Ultimately the
energies become Boltzmann distributed [4.56], allowing the calculation of the
temperature

P (ED) ∝ exp
(
−ED

kBT

)
(1.32)

The Ising model serves as an example for application of the Monte-Carlo
simulation method.



1.1 Monte-Carlo Method 17

Example 5.2

The Ising model [146] is defined as follows. Let G = Ld be a d-dimensional
lattice. Associated with each lattice site i is a spin si which can take on the
values +1 or −1. The spins interact via an exchange coupling J . In addition,
we allow for an external field H. The Hamiltonian reads

H = −J
∑
〈i,j〉

sisj + µH
∑

i

si (1.33)

The first sum on the right-hand side of the equation runs over nearest
neighbours only. The symbol µ denotes the magnetic moment of a spin. If
the exchange constant J is positive, the Hamiltonian is a model for ferromag-
netism, i.e., the spins tend to align parallel. For J negative the exchange is
anti ferromagnetic and the spins tend to align antiparallel. In what follows
we assume a ferromagnetic interaction J > 0.

Figure 1.6.

The Ising model exhibits a phase transition (see, for example, [127] by
Stanley for an introduction to phase transitions). It has a critical point Tc,
where a second-order transition occurs. For temperatures T above Tc, the
order parameter, i.e., the magnetization m (number of ”up” spins minus
number of ”down” spins divided by the total number of spins), is zero in zero
magnetic field. For temperatures T below Tc, there is a two-fold degenerate
spontaneous magnetization. The phase diagram for the model is displayed
schematically in Figure 1.7.

To calculate, for example, the magnetization of the three-dimensional
model we can use the microcanonical Monte-Carlo method. The magneti-
zation will be a function of the energy. However, with the distribution of the
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Figure 1.7. Schematic phase diagram of the three dimensional Ising model. M is
the magnetization and T the temperature. Tc, is the critical point

demon energy we also obtain the magnetization as a function of temperature.
For simplicity, we set the applied field to zero.

Let E be the fixed energy and suppose that a spin configuration s =
(s1, ..., sN ) was constructed with the required energy. We set the demon en-
ergy to zero and let it travel through the lattice. At each site the demon
attempts to flip the spin at that site. If the spin flip lowers the system en-
ergy, then the demon takes up the energy and flips the spin. On the other
hand, if a flip does not lower the system energy the spin is only flipped if the
demon carries enough energy. A spin is flipped if

ED −∆H > 0 (1.34)

and the new demon energy is

ED = ED −∆H (1.35)

After having visited all sites one ẗime unitḧas elapsed and a new configu-
ration is generated. In Monte-Carlo method language the time unit is called
the MC step per spin. After the system has relaxed to thermal equilibrium,
i.e., after n0 Monte-Carlo Steps (MCS), the averaging is started. For exam-
ple, we might be interested in the magnetization. Let n be the total number
of MCS, then the approximation for the magnetization is

m̄ =
1

n− n0

n∑
i≥n0

m(si) (1.36)

where si is the ith generated spin configuration. Since the demon energies
ultimately become Boltzmann distributed, it is easy to show that

J

kBT
=

1
4

ln
(

1 + 4
J

〈ED〉

)
(1.37)

To carry out the simulation we use a simple cubic lattice of size 323.
Initially all spins are set d̈own̈. Then we select spins at random and turn
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them over until the desired energy is reached. From then on we proceed
as developed above. Figure 1.8 shows the resulting distribution of ED at
the fixed energy E after 3000 MCS and 6000 MCS. The exact value of the
temperature is T/TC = 0.5911, corresponding to E. The results from the
simulations are

DO 200 MCS=1,MCSMAX
DO 100 IZ=1,L
IMZ = IM(IZ)
IPZ = IP(IZ)
DO 100 IY=1,L
IMY = IM(IY)
IPY = IP(IY)
DO 100 IX=1,L

C
ICI = ISS(IX,IY,IZ)
IVORZ = ISIGN(1,ICI)
IEN = ICI * IVORZ - 7

C
IF ( DEMON - IEN - H * IVORZ .LT. 0 ) GOTO 100
DEMON = DEMON - IEN - H * IVORZ

C--------------FLIP SPIN
M = M - IVORZ
ISS(IX,IY,IZ) = ICI - IVORZ * 14
ICH = - 2 * IVORZ
ISS(IM(IX),IY,IZ)= ISS(IM(IX),IY,IZ) + ICH
ISS(IP(IX),IY,IZ)= ISS(IP(IX),IY,IZ) + ICH
ISS(IX,IMY,IZ) = ISS(IX,IMY,IZ) + ICH
ISS(IX,IPY,IZ) = ISS(IX,IPY,IZ) + ICH
ISS(IX,IY,IMZ) = ISS(IX,IY,IMZ) + ICH
ISS(IX,IY,IPZ) = ISS(IX,IY,IPZ) + ICH

100 CONTINUE
C
C IPTR = 10 * DEMON + 1
C IDIST( IPTR ) = IDIST( IPTR ) + 1

DEMAV = DEMAV + DEMON
MAGAV = MAGAV + M
FLDEM = FLDEM + DEMON * DEMON

C
200 CONTINUE

T/Tc = 0.587, 3000MCS

T/Tc = 0.592, 6000MCS
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Figure 1.8. Distribution of the demon energy ED in a microcanonical Monte-Carlo
simulation of the three dimensional Ising model in zero field

A fairly large number of Monte-Carlo steps are needed before the demon
reflects the real temperature. This is to be expected since the relaxation into
thermal equilibrium is governed by conservation laws. Due to the energy con-
servation a slow approach to equilibrium results for the demon representing
the temperature.

In the foregoing example no mention was made of the boundary conditions
imposed on the system. How does a particle interact across the boundary?
Several possible choices exist, which we group as

1. periodic boundary conditions,
2. free boundary conditions, and
3. non-standard boundary conditions.

In the third category we lump together boundary conditions which create
effects that are not yet fully understood. An example falling into this class is
the self-consistent field boundary condition [119, 120, 147]. Better understood
in their behaviour [139] are the periodic and the free boundary conditions.
The periodic boundary condition applies to a hypercubic system and was
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employed in the MD simulation. There this boundary condition was selected
to eliminate surface effects to simulate the bulk behaviour. The same applies
here because we are primarily concerned with the behaviour of the system in
the thermodynamic limit. Let L1, ..., Ld be the linear dimensions of the box.
For any observable A we have

A(x) = A(x + Li), i = 1, ..., d (1.38)

Li = (0, ..., 0, Li, 0, ..., 0) (1.39)

The periodic boundary condition establishes translational invariance and
eliminates surface effects to a large extend. Conceptually the system is in-
finite; however, it can still accommodate only finite lengths. Some types of
problems require mixed boundary conditions. Studies of wetting phenomena
[148] furnish examples where both periodic and free boundaries are combined
[139].

1.1.6 Canonical Ensemble Monte-Carlo Method

The Metropolis method for a constant temperature Monte-Carlo sim-
ulation is introduced. We treat various examples where this method is
used to calculate thermodynamic quantities. Also a non-local simulation
method is introduced.

In contrast to the microcanonical ensemble where all states have equal
a priori weight, in the canonical ensemble some states are assigned different
weights. A simple random walk through phase space is not applicable for
the evaluation of observables in the (N,V, T )-ensemble. In thermodynamic
equilibrium some states occur more frequently. To generate a path such that
the states occur with the correct probability, a Markov process has to be
constructed, yielding a limit distribution corresponding to the equilibrium
distribution of the canonical ensemble.

In the canonical ensemble the particle number N , the volume V , and the
temperature T are fixed. In such a situation an observable A is computed as

〈A〉 =
1
Z

∫
Ω

A(x)exp

(
−H(x)
kBT

)
dx (1.40)

Z =
∫

Ω

exp

(
−H(x)
kBT

)
dx (1.41)

To develop a heat-bath Monte-Carlo method we note that in equilibrium
the distribution of states is
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P (x) = Z−1 exp
(
−H(x)
kBT

)
(1.42)

If we impose the detailed balance condition in equilibrium we find

W (x, x′)P (x) = W (x′, x)P (x′) (1.43)

W (x, x′)
W (x′, x)

=
P (x′)
P (x)

(1.44)

Due to the property of the exponential, the ratio of the transition prob-
abilities depends only on the change in energy ∆H on going from one state
to another

W (x, x′)
W (x′, x)

= exp
[
−H(x′)−H(x)

kBT

]
= exp

(
−∆H
kBT

)
(1.45)

We may use the form (4.41) developed in Sect.4.3 to specify the transition
probability for the Metropolis MC method

The numbers w are still at our disposal. The only requirements they have
to fulfil are those stated in (4.40). W(x,x’) is the transition probability per
unit time and the u/s determine the time scale.

Algorithm NVT Monte-Carlo

1. Specify an initial configuration.
2. Generate a new configuration x’.
3. Compute the energy change E
4. If b,
5. Compute exp(-EW/k¿ T).
6. Generate a random number R e [0, 1].
7. If R is less than exp(-b,W/k¿ T), accept the new configuration ani return

to Step 2.
8. Otherwise, retain the old configuration as the new one and return ti Step

2.

At this point we see more clearly the meaning of the choice of transition
probabilities. The system is driven towards the minimum energy correspond-
ing to the parameters (N,V, T ). Step 4 says that we always accept: new
configuration having less energy than the previous one. Configuration which
raise the energy are only accepted with a Boltzmann probability.

Example 5.3

To demonstrate an implementation of the canonical-ensemble Monte-
Carlo method, we use again the Ising model already familiar to us from
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th previous section. The first step in constructing an algorithm for the sim-
ulation of the model is the specification of the transition probabilities froa
one state to another. The simplest and most convenient choice for the actual
simulation is a transition probability involving only a single spin; all other
spins remain fixed. It should depend only on the momentary state of the
nearest neighbours. After all spins have been given the possibility of a flip a
new state is created. Symbolically, the single-spin-flip transition probability
is written as

Wi(

where Wi is the probability per unit time that the ith spin changes from si

to −si. With such a choice the model is called the single-spin-flip Ising model
[150]. Note that in the single-spin-flip Ising model the numbers of up spins N↑
and down spins N↓ are not conserved, though the total number N = N↑+N↓
is fixed. It is, however, possible to conserve the order parameter [116]. Instead
of flipping a spin, two nearest-neighbour spins are exchanged if they are of
opposite sign. This is the Ising model with so-called Kawasaki dynamics [171].
In this particular example the volume is an irrelevant parameter. The volume
and the number of particles enter only through their ratios, i.e., (V/N, T ) are
the parameters.

To proceed we have to derive the actual form of the transition probability.
Let P (s) be the probability of the state s. In thermal equilibrium at the fixed
temperature T and field K, the probability that the i-th spin takes on the
value si is proportional to the Boltzmann factor

Peq(si) ∝ exp

(
−H(si)
kBT

)
(1.46)

The fixed spin variables are suppressed. We require that the detailed
balance condition be fulfilled:

Wi(si)Peq(si) = Wi(−si)Peq(−si) (1.47)

or

Wi(si)
Wi(si)

=
Peq(−si)
Peq(si)

(1.48)

With (4.48) it follows that

Wi(si)
Wi(si)

=
exp(−si/Ei)
exp(si/Ei)

(1.49)

where

Ei = J
∑
〈i,j〉

sj (1.50)
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The derived conditions (4.59-61) do not uniquely specify the transition
probability W. We have a certain freedom to choose W to be numerically
efficient. At least two choices of transition probabilities are consistent with
(4.61):

The Metropolis function [4.30]

Wi(si) = min
{
τ−1, τ−1exp(−∆H/kBT )

}
(1.51)

and the Glauber function [4.61]

Wi(si) =
(1− si tanh Ei/kBT )

2τ
(1.52)

where τ is an arbitrary factor determining the time scale. Usually τ is set
to unity. To simulate the physical system, for which the Hamiltonian (4.48) is
a model, more closely, we could consider the factor τ to depend on parameters
like the temperature.

In Sect.4.3 we described a dynamic interpretation of the MC method.
The question arising is how far dynamic properties such as dynamic cor-
relation functions are influenced by the choice of the transition probabilities.
Near thermal equilibrium this choice leads only to a renormalization of the
time scale [4.31]. However, for states far from equilibrium, the choice greatly
influences the relaxation towards equilibrium [4.62].

In what follows we choose the Metropolis function. Having specified the
transition probabilities guaranteeing the relaxation into thermal equilibrium,
the essential step in the development is done. Suppose an initial configuration
is specified. First a lattice site has to be selected. This can be done either
by going through the lattice in a typewriter fashion, or by selecting sites at
random. Then Wi is computed. Next a random number is generated to be
compared with the transition probability. If the probability of a transition is
larger than the random number, the transition from si to −si is accepted.
Otherwise the spin remains in the state si. The algorithm proceeds by se-
lecting a new site. After all sites have been visited once by the typewriter
method, or N choices of sites in a random fashion have been made, a new
state of the system is generated. This comprises one time unit, or one Monte-
Carlo step. H ow far the Monte-Carlo time, which depends on τ , corresponds
to time in a physical system is still an unresolved question [4.49, 50].

Algorithmically the Metropolis MC method looks as follows:

1. Specify an initial configuration.
2. Choose a lattice site i.
3. Compute W;.
4. Generate a random number R e [0, 1].
5. If W;(s;) ¿ R, then s; -s;.
6. Otherwise, proceed with Step 2 until N attempts have been made.
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Figure 1.9 shows the results of Monte-Carlo simulations for the magne-
tization of the three-dimensional Ising model at various temperatures. The
simulation had a duration of 1000 MCS. The first 500 steps were discarded
and the magnetization averaged over the second 500 steps. The different sym-
bols denote lattices of various sizes. To give a feeling for the computational
needs, the inset shows the required execution time in seconds for one Monte-
Carlo step. The time increases proportional to the system size N = Ld. These
execution times were obtained with the progam PL4 listed in Appendix A2.
That the execution time increases linearly with the system size is not true in
general. Some algorithms, especially those for vector machines and parallel
computers, perform in a different way (see references listed in conjunction
with the discussion of the program PL4).

Figure 1.9. Magnetization for various temperatures and lattice sizes for the three
dimensional Ising model with single spin flip. The inset shows the execution time
requirements. The Monte-Carlo simulations proceeded for 1000 MCS and the aver-
ages were performed using the second 500 steps

From the observed values it is apparent that the magnetization depends
on the lattice size. The effect is most dramatic near the critical temperature.
For low temperatures, i.e., T much smaller than Tc the results are less sensi-
tive to the lattice size. Indeed, the magnetization there converges to the true
thermodynamic limit value rapidly. For high temperatures the magnetiza-
tion is non-zero, though in the thermodynamic limit there is no spontaneous
magnetization.

The behaviour of the magnetization is one typical example of finite-size
effect occurring near second-order phase transitions [128, ?] [4.40,63-66]. It
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can be understood by considering the correlation length. As the critical tem-
perature is approached, the correlation length diverges, so that the finite
system can accommodate only finite lengths. Hence, there will be rounding
effects. In the case of first- and second-order hase transitions, the finite-size
effects can be treated systematically [4.50]. Other situations require at least
at the moment an ad hoc analysis.

Note that in Figure 1.9 the magnetization is plotted with absolute values.
This is due to the two-fold degeneracy of the magnetization in the thermo-
dynamic limit. For each temperature below the critical temperature there is
a spontaneous magnetization +m(T ) or −m(T ). For finite systems the delta
functions are smeared out to two overlapping Gaussians, and the system has
a finite probability for going from a positive to a negative magnetization. It
is therefore essential to accumulate the absolute values for the average.

Here we come back again to the question of ergodicity. In the Ising model
an effectively broken ergodicity occurs. For a temperature below the critical
temperature, the system may have either a positive or negative magnetiza-
tion. During the course of a simulation both orderings are explored in a finite
system if the observation time is long enough. The free-energy barrier be-
tween the two orderings is of the order N (d−1)/d [4.42] and the relaxation
time is roughly exp(aN (d−1)/d). Depending on the observation time and the
size of the system, the states generated by the MC simulation may explore
only one ordering.

There is a difficulty with the transition probability. Suppose H >> kBT
or suppose kBT ≈ 0. Due to the exponential function, Monte-Carlo moves
in such a situation occur very infrequently. The acceptance probability is
proportional to exp(−H/kBT )! The motion through phase space is slow and
an enormous number of states have to be generated in order for the system to
reach equilibrium. If the system has continuous state variables, for example,
in a simulation of the Lennard-Jones system, with MC methods, we can speed
up the convergence. Let xi denote the position of an atom. We generate a trial
position xxxxxxxxx where r is a random number from the interval [−δ,+δ].
To raise the acceptance rate of the Monte Carlo moves we simply choose
δ appropriately. However, there is a danger that the constraint introduces
inaccuracies.

In the case where kBT ≈ 0 we have to resort to other methods to speed
up convergence [4.36,65,67,68]. In particular, we could develop an algorithm
where only successful moves are made (cf. the discussion on the Monte-Carlo
realization of the Master equation in Sect.4.3). The time intervals in such a
method are then not equidistant.

Example 5.4



1.1 Monte-Carlo Method 27

Up to now we have discussed examples with a discrete local state. In the
Ising model the local state, i.e., the spin orientation si can be either +l or
−1. What we want to study in this example is a model with the Hamiltonian

H(c) =
∑

i

(r

2
ci

2 +
u

4
ci

4
)

+
C

2

∑
〈i,j>〉

(ci − cj)
2 (1.53)

where r, u, C are constants, and the local state variable ci may as-
sumes values between −∞ and +∞. This Hamiltonian is related to the
coarse-grained Landau-Ginzburg-Wilson free-energy functional of Ising mod-
els [4.82,83]. We shall not be concerned with the precise relation [4.84]. We
just mention that the parameters and the ci’s are the result of a coarse-
graining procedure involving blocks of spins. Here we want to develop a
Monte-Carlo algorithm to simulate the model given by the above Hamil-
tonian.

The first step we shall carry out is to scale the Hamiltonian to reduce the
number of parameters. For this we consider the mean-field approximation of
the solution to the model. In the mean-field approximation possible spatial
fluctuations of the order parameter are neglected. Hence, the second sum on
the right-hand side of (4.66) can be ignored and the partition function is

Z = Tr{ci} exp

[
−

∑
i

(r

2
ci

2 +
u

4
ci

4
)]

(1.54)

If r is less than zero we can work out the free energy and find the order
parameter

cMF = ±
√
−r/u (1.55)

If r is larger or equal to zero, the order parameter is identical to zero.
Next we need to know the susceptibility χ and the correlation length ξ

χ(q) = χMF

(
1 + q2ξ2

)−1

χMF = (−2r)−1 (1.56)

ξMF =

√
C

−2r

where q is the wave vector, and the above equations were obtained in
linear response. Having derived the order parameter we normalize ci with
the mean-field order parameter mi = ci/cMF to find

H =
r2

u

∑
i

(
−m2

2
+

m4

4

)
+ χMF

2
∑
〈i,j〉

(mi −mj)
2

 (1.57)
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Essentially, we are left with two parameters to vary. However, we would
like to have the Hamiltonian in a slightly different form. Let us evaluate the
square in the second term on the right-hand side of (4.66) and rear-range the
terms yielding

H =
∑

i

(
r + 2dC

2
ci

2 +
u

4
ci

4

)
− C

∑
〈i,j〉

cicj (1.58)

where d is the dimension of the lattice. Recall that with each lattice site a
local site variable ci is associated, and that there are 2d nearest neighbours.
Performing again a normalization

mi = ci

[
−r + 2dC

u

]−1/2

(1.59)

we find

H = α
∑

i

(
−1

2
mi

2 +
1
4
mi

4

)
− β

∑
〈i,j〉

mimj (1.60)

Notice the resemblance of the Hamiltonian to the Ising Hamiltonian in the
previous examples. The recognition of the formal resemblance is the major
step for the development of the algorithm. Why do we not set up the algo-
rithm directly? In simulating directly a model such as (4.66) one encounters
the difficulty that the local variable mi is not bound. One may replace the
interval (−∞,∞) by [−a, a]. However, serious inaccuracies result from such
a choice due to the truncation. Instead of truncating the interval we choose
mi’s with the single-site probability

Pi ∝ exp
[
−α

(
−1

2
mi

2 +
1
4
mi

4

)]
(1.61)

and allow all values of m, within the possible numerical accuracy. Figure
4.6 shows the distribution for two parameter values as obtained during a
simulation.

Let us split the Hamiltonian into two parts [4.85, 86]

H = H1 +H2 (1.62)

where

H1 = −β
∑
〈i,j〉

mimj , H2 = α
∑

i

(
−1

2
mi

2 +
1
4
mi

4

)
(1.63)

What have we gained? Let us write the expectation for an observable as
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Figure 1.10. Probability distribution (4.74) of the local variable mi as obtained
by sampling

〈A〉 =
1
Z

∫
Ω

A(m)exp [−H(m)] dm

=
1
Z

∫
Ω

A(m)exp [−H1(m)−H2(m)] dm (1.64)

Because the Hamiltonian is split into two parts we may introduce a new
measure (recall the procedure to introduce to the Monte-Carlo technique to
reduce the variance)

dλ(m) = Z−1exp [−H2(m)] dm (1.65)

and obtain

〈A〉 =
1
Z ′

∫
Ω

A(m)exp [−H1(m)] dλ(m) (1.66)

With this we have succeeded in reducing (4.66) to the problem of cal-
culating the expectation of A within the Ising model with continuous spin
variables. Instead of just flipping a spin we must choose a trial m; distributed
according to the measure dλA. Clearly dλA can vary between zero and one;
thus, a homogeneously distributed set of points in the phase space is mapped
on the interval [0, 1] with a density governed by the factor exp[−H2(m)] by
means of the cumulative distribution

C(y) =

∫ y

−∞ dλ(m)∫∞
−∞ dλ(m)

(1.67)
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Figure 1.11. Shown is the order parameter relaxation for two values of the pa-
rameter β

Figure 1.12. Finite size dependence of the order parameter

The trial mi is obtained by generating first a random number r ∈ [0, 1]
and then calculating the inverse of C(r). The Monte-Carlo algorithm using
the above looks like

1. Select a site i of the lattice.
2. Generate a random number r ∈ [0, 1].
3. Invert C(r) to get a trial value for mi.
4. Compute the change b,W¿ in the ”Ising part” of the Hamiltonian
5. Generate a random number R C [0, 1].
6. If R is less than exp(-b.SF ¿) accept the trial value m;.
7. Otherwise, reject the trial m; and the old state becomes the new state.
8. Go to Step l.

Of course, there is no need to invert the functional for each trial. One may
store a convenient number of C−1(r) in a table and interpolate for r-values
not stored.
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The relaxation of the system from an initial state has already been men-
tioned several times. Figure 1.11 displays how the order parameter relaxes
into equilibrium for two values of the parameter β with fixed α. We notice
that the relaxation for β = 0.45 proceeds faster than for β = 0.28. Accord-
ingly, different portions of the initial chain have to be discarded.

Figure 1.13. Finite size scaling plot of the order parameter

The results for the order parameter as a function of p are shown in Fig-
ure 1.12. As for the Ising model with a discrete local state, we observe a
pronounced finite-size dependence. Below the critical point where the cor-
relation length is small, the finite-size effects start to disappear. The data
can, however, be collapsed to a single curve, as shown in Figure 1.13. The
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values or the magnetization above and below near the critical point s(hlji’.
is is an example of finite-size scaling. Finite-size effects are also dramatic in
the susceptibility (Figure 1.14)

χL ∝
〈
m2

〉
− 〈m〉2 (1.68)

At the critical point the susceptibility diverges in the thermodynamic
limit. Due to the finite size of the system, the divergence is rounded. In
addition, the finite size leads to a shift in the critical temperature. CI

Figure 1.14. Finite size dependence of the susceptibility
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1.1.7 Cluster Algorithms

So far we have only encountered Monte-Carlo simulations on lattices with
simple local objects, or off-lattice simulations where the particles could be
moved locally. There exists the possibility of introducing changes in the con-
figuration on a more global level. One of the problems, especially close to
second-order phase transitions, is the critical slowing down. The system there
behaves in a very correlated fashion. Local changes, as they are produced, for
example with the Metropolis importance sampling, cannot propel the system
fast enough through phase space. The result is a very slow relaxation into
equilibrium and the continued large correlation between successive config-
urations. In the following example we want to examine a reformulation of
the Ising model which will allow us to introduce larger changes to the con-
figurations. This in turn leads to a reduction in the critical slowing down
[4.87-89].

The system for which we formulate the algorithm is the Ising model with
the Hamiltonian

HIsing = −J
∑
i,j

sisj (1.69)

which we have met before several times. This also allows an immediate
comparison. In principle, the algorithm can also be formulated for the Potts
model.

To understand the reasoning and the algorithm it is perhaps best to first
give a quick run through the main ideas and then go into a little bit more
detail.

The main idea was put forward by Fortuin and Kastelyn [179]. They
proposed, and succeeded in showing, that the Ising model Hamiltonian could
be mapped onto the percolation problem, which we encountered at the very
beginning of this text. The mapping gives a new partition function

Z =
∑

n

B(β, n)2c(n) (1.70)

i.e., a combinatorial factor and contributions from the two possible cluster
orientations. Instead of single spins we now have to talk about patches, or
clusters of spins. Each cluster is independent of the other clusters.

We see now the advantage of such a reformulation. Instead of turning
over single spins, we are able to turn over entire clusters of spins. This brings
about large changes from one configuration to the other.

To perform a Monte-Carlo simulation using this idea Swendsen and Wang
[154] designed an algorithm to produce the clusters and to go from one config-
uration to another. A configuration in the Swendsen-Wang method consists
of an assignment of spin orientations to the lattice sites and an assignment of
bonds between parallel spins. Consider such a configuration of a lattice with
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spin up and spin down. On top we have the bonds which are always broken
between spins of opposite direction. Between spins of the same direction a
bond can be present. An example is depicted in Figure 1.15. A cluster is de-
fined as follows. Two up spins belong to the same cluster if they are nearest
neighbours and if there is a bond between them.

Figure 1.15. Shown is a spin configuration with one set of bonds, i.e., those
between, say, the up spins

Once all clusters of up spins and all clusters of down spins have been
identified we can proceed to generate a new configuration. The first step
consists in choosing a new orientation for each cluster. In the model without
a magnetic field, the new orientation for each cluster is chosen at random,
i.e., with a probability k the orientation is reversed. After this reorientation
all bonds are deleted so that only the spin configuration remains. Now the
process of a bond assignment and new cluster orientation is repeated.

We shall now derive the probability with which we must assign a bond
between parallel spins [4.89]. Let us derive this for the Ising model with a
magnetic field

HIsing = −J
∑
〈i,j〉

sisj + µH
∑

i

si (1.71)

Let P (s) = Zexp(−βH) be the probability for the occurrence of the
configuration s. We shall define a new Hamiltonian

˜HIsing = J

NB −
∑
〈i,j〉

sisj

 + H

[
Ns +

∑
i

si

]
(1.72)
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This Hamiltonian is zero for the ground state at zero temperature. Here
NB and NS are the number of bonds on the lattice and the number of sites,
respectively.

Denote by Np(s) the set of all bonds that lie between two parallel spins and
c(Γ ) the set of all closed bonds [c(Γ )cNp(s)]. Define p to be the probability
of the presence of a bond and q the absence of a bond. Then we have for the
probability of getting a bond configuration Γ )

P (Γ ) =
∑

s

P (s)P (Γ |s) (1.73)

where the conditional probability that a bond configuration Γ is generated
from a spin configuration s is

P (Γ |s) = δΓ,sp
c(Γ )qNp(s)−c(Γ ) (1.74)

Suppose we have a spin configuration. Choose the following spin orienta-
tions for the clusters λ

• -1 with probability s = (l + exp[2pHN(A)])
• +1 with probability t = 1 - s

where N(λ) is the number of sites associated with the cluster λ. Thus,
the probability of generating a new spin configuration s′ is given by

P (s′) =
∑
Γ

P (Γ )P (s′|Γ ) (1.75)

where P (s′|Γ ) is the conditional probability that the spin configuration
s′ is generated from Γ , i.e.,

P (s′|Γ ) = δΓ,s′s
γ−(Γ )tγ

+(Γ ) (1.76)

with γ−(Γ ) being the number of clusters of spin −l and γ+(Γ ) the number
of clusters of spin +1. The total number of clusters is given by γ(Γ ) =
γ−(Γ ) + γ+(Γ )

We can now work out P (Γ ) and find that

q = exp (−2βJ) (1.77)

Hence bonds are present on the lattice with p = l-exp(-2pJ) and clus-
ters are reoriented with probability s. Finally the partition function for the
normalized Hamiltonian is

Z̃ =
∑
Γ

pc(Γ )qNB−c(Γ )

γ(Γ )∏
λ

[1 + exp(2βHN(λ))] (1.78)

Figure refChap5sw1 gives the result of a Monte-Carlo simulation of a 1282

lattice with different applied magnetic fields. At this point we must exercise
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Figure 1.16. Monte-Carlo results using the Swendsen-Wang algorithm for the Ising
model with a magnetic field. The system size is l282

some caution. There is no a priori argument guaranteeing us that the finite
size effects are the same as those for the Metropolis or Glauber Ising model.
Indeed, if we analyse the configurations using the percolation probability as
the order parameter, which in the thermodynamic limit is the same as the
magnetization, we find that for temperatures above the critical point the size
effects are different [4.91].

Beside the above example, other proposals for speeding up the relaxation
and reducing the correlation between configurations have been made. Most
prominent are the Fourier acceleration [4.92] and the hybrid Monte-Carlo
method [4.93] that we will meet later on.



1.6 Problems 37

1.1.8 Multi-Canonical Monte Carlo

1.2 Multi-Grid Monte Carlo

1.3 Quantum Monte Carlo

1.4 Path Intergal Monte Carlo

1.5 Hybrid Monte Carlo

It has become widely accepted that the Hybrid Monte Carlo (HMC) algo-
rithm proposed by Duane et al. in their seminal paper [?] is a promising
alternative to both microcanonical and Monte Carlo simulations in the con-
text of lattice gauge theories [?, ?, ?, ?, ?]. HMC is a global algorithm, it has
been shown to reduce critical slowing down for free field theories [?]. More-
over it is an exact algorithm, i.e. the ensemble averages do not depend on the
step size chosen and the algorithm does not suffer from numerical instabilties
due to finite step size as Molecular Dynamics (MD) algorithms do.

1.6 Problems

1. Devise an algorithm to compute the mean square displacement
(x(t) ) = p ([x (t) - x (0)) ) for N particles in a volume with periodic
boundary conditions.

2. Write an algorithm for a system of N uncoupled Brownian particles.
3. Show that the symmetrical choice of transition probabilities satisfies the

Restrictions 4.11ii-iv.
4. Show that for the Ising model the temperature can be computed from

the demon energy E¿ as Show also that if the magnetic field is non-zero
then

5. Show that the Metropolis function and the Glauber function are mathe-
matically equivalent.

6. Show that the Metropolis and the Glauber functions are limiting cases
of a transition probability with one more parameter z (taking r’ = 2 )

7. The Ising model may also be simulated with a conserved order param-
eter. This is the so-called Kawaski dynamics [4.37]. Instead of fliping a
spin, two unequal nearest neighbours are selected and exchanged if a
comparison of the drawn random number and the transition probability
permits this. Modify the program PL4 in Appendix A2 for the conserved
order-parameter case.

8. Adapt the program given in Appendix A2 for the three-dimensional
single-spin-flip Ising model to two dimensions. [The exchange coupling
in two dimensions is J/k T, = 41n(l+v 2).)
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9. Finite-size effects are an important consideration in simulations. For
many types of problems large systems are required. Invent an algorithm
for the single-spin-flip Ising model which minimizes the required storage
for a simple square lattice.

10. Rewrite the grand ensemble Monte-Carlo method with symmetrical tran-
sition probabilities.

11. Self-Avoiding Random Walk. The self-avoiding random walk is a random
walk where the walker does not cross its own path. At each step the walker
checks if the neighbouring sites have been visited before. Of course, the
walker is not allowed to retrace its steps. Quite often the walker encoun-
ters a situation where all the sites in the im- mediate neighbourhood have
been visited before. The walk then terminates. Write a program which
shows on a screen how a self-avoiding random walk proceeds across a
two-dimensional grid.

12. An obvious extension to the Creutz algorithm is to introduce more than
one demon, i.e., allow more degrees of freedom. Can you use this to
parallelize the Creutz algorithm?

13. In the limit of one demon per lattice site the Creutz algorithm crosses over
to the usual Metropolis Monte-Carlo algorithm. What are the pitfalls?

14. Q2R Ising Model. Beside the Creutz idea of performing simulations
at constant energy, one can do simulations without introducing an extra
degree of freedom. Take the two-dimensional Ising model. Each spin is
surrounded by four nearest neighbours. Suppose the sum of the nearest
neighbour spins of spin i is zero, 0 = E”” q)SJ In this case the energy is
unaffected by a reversal of the central spin i. Starting from a configuration
at the desired energy sweep through the lattice and reverse all spins where
the energy is left invariant. Consider the ergo- dicity of the algorithm.
How must one perform the sweeps? Is the algorithm ergodic at all?

15. Show that for the Q2R one is able to obtain the temperature, i.e., exp(-
pJ) by sampling.

16. Can you design an algorithm where several spins are coded into the same
computer word, the decision and updating are done using logical opera-
tor’s? [193].

17. Cellular Automata. The above exercise concerns a special cellular au-
tomaton. Consider a lattice. At each lattice site there is an automaton
with a given set of states S = (s¿,...s”). The states are changed by a
set of rules R = (r ,...r ). The rules usually depend on the states of the
neighbouring automata.

18. Ergodicity of Cellular Automata. Cellular automata can be updated syn-
chronously and asynchronously. Consider the ergodicity and develop a
criterion [194].

19. Kauffman Model. There is an interesting class of cellular automata
which is intended to simulate some biological features. The Kauffman
model [195] is a random Boolean cellular automaton. The states of one
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cell can be either one or zero. In two dimensions there are four nearest
neighbour cells.

20. Helical Boundary Conditions. Consider a simple two-dimensional lat-
tice L(i, j) with i and j ranging from 0 to n-1. For helical boundary con-
ditions we make the identification Are the finite size effects influenced by
the choice of boundary conditions? Can you give analytical arguments?
Perform simulations with free, periodic, and helical boundary conditions
for the Ising model and compare the results for the order parameter and
the susceptibility. Which of your algorithms is the fastest?

21. Program the Swendsen-Wang algorithm for the two-dimensional Ising
model (you will need a cluster identification algorithm). The magnetiza-
tion and the susceptibility can be obtained from the cluster size distribu-
tion. Are the size effects the same as for the usual Metropolis algorithm
[180]?

22. Derive along the lines given in the Example 4.5 the bond probability p
for the Ising model without a magnetic field. Show that the probabili-
ties derived for the case with a magnetic field reduce to the one in zero
field.

23. bf Block Distribution Function. There exists another way of introducing
fluctuations in the number of particles to calculate such quantities as
the isothermal compressibility [4.107]. Imagine the computational box
partitioned into small boxes. Let the linear box size be S, i.e., n = L/S is
the number of boxes into which the computational volume has been split.
In each of the boxes of sides of length S we find in general a different
number of particles. For a fixed overall particle number and fixed block
size we can construct the probability function P,(N) giving the probability
of finding N particles inside the box of volume S . How do you compute
the isothermal compressibility from the probability function P,(N)?

24. Heat-Bath Algorithm. Once again consider the Ising model. The heat
bath algorithm to simulate the model consists of selecting the new spin
orientation independent of the old one by setting where r is a random
number between 0 and 1 and
Is there a difference between the Glauber probabilities and the heat bath
probabilities?

25. Bond Fluctuation Model

26. Diffusion Limited Aggregation
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Figure 1.17.

b

a

Figure 1.18.
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