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1. Deterministic Methods

The kind of systems we are dealing with in this chapter are such that all de-
grees of freedom are explicitly taken into account. We do not allow stochastic
elements representing, for example, an interaction of the system with a heat
bath. The starting point is a Newtonian, Lagrangian or Hamiltonian formu-
lation within the framework of classical mechanics. What we are interested in
is to compute quantities for such systems, for example, thermodynamic vari-
ables, which appear as ensemble averages. Due to energy conservation the
natural ensemble is the microcanonical one. However, sometimes it is desir-
able to compute a quantity in a different ensemble. To allow such calculations
within the framework of a Newtonian, Lagrangian or Hamiltonian descrip-
tion, the formulation has to be modified. This results in a reformulation of
the differential equations of motion. These equations will be discretized to
generate a path in phase space, along which the properties are computed.

1.1 Molecular Dynamics

The mathematical background to the molecular dynamics method is pre-
sented. Some approximation schemes for the differential equations are dis-
cussed. Basic notions such as the computational cell, boundary conditions
and the minimum image convention for the calculation of the force are intro-
duced.

The starting point for the Molecular Dynamics (MD) method [27] [28],
[29], [30], [31],[32], [33] is a well-defined microscopic description of a physical
system. The system can be a few- or many-body system. The description may
be a Hamiltonian, Lagrangian or expressed directly in Newton’s equations of
motion. In the first two cases the equations of motion must be derived by
applying the well-known formalisms. The molecular dynamics method, as the
name suggests, calculates properties using the equations of motion, and one
obtains the static as well as the dynamic properties of a system. As we shall
see, the Monte-Carlo method yields the configurational properties, although
there is also a dynamic interpretation [34].

The approach taken by the MD method is to solve the equations of mo-
tion numerically on a computer. To do so, the equations are approximated by
suitable schemes, ready for numerical evaluation on a computer. Clearly there
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will be an error involved due to the transition from a description in terms
of continuous variables with differential operators to a description with dis-
crete variables and finite difference operators. The order of the entailed error
depends on the specific approximation, i.e., the resulting algorithm. In prin-
ciple, the error can be made as small as desired, restricted only by the speed
and memory of the computer.

The molecular dynamics method computes phase space trajectories of a
collection of molecules which individually obey classical laws of motion. Note
that this includes not only point-particle systems but also collections of ”par-
ticles with subunits” [97]. Indeed, an algorithm exists that allows systems
to have internal constraints as, for example, a system of polymers [?],[38],
[39],[40],[41], [42]. Also possible are constraints such as the motion in a spe-
cific geometry [43]. Early simulations were carried out for systems where the
energy is a constant of motion [27] [28], [29], [30], [31],[32], [33]. Accordingly,
properties were calculated in the microcanonical ensemble where the particle
number N , the volume V , and energy E are constant. However, in most situ-
ations one is interested in the behaviour of a system at constant temperature
T . This is partly due to the fact that the appropriate ensemble for certain
quantities is not the micro-canonical but the canonical ensemble. Significant
advances in recent years now allow computation within ensembles other than
the microcanonical. We will see how the equations of motion are modified
to allow such calculations without introducing stochastic forces. The gen-
eral technique is not restricted to deterministic equations of motion. Rather,
equations of motion involving stochastic forces can be simulated. Algorithms
covering such problems will be discussed in later chapters; however, some of
the material presented here also applies to non-deterministic dynamics. What
we have to deal with are equations of the form

dz(t)
dt

= K(z(t), t) (1.1)

where z is the unknown variable, which might be, for example, a velocity,
an angle or a position, and K is a known operator. The variable t is usually
interpreted as the time. We shall not restrict ourselves to a deterministic
interpretation of (1.1) but allow u(t) to be a random variable. For example,
we might be interested in the motion of a Brownian particle and (1.1) takes
on the form of the Langevin equation

dv(t)
dt

= −βv(t) + R(t) (1.2)

Since the fluctuation force R(t) is a random variable, the solution v(t) to
the Stochastic Differential Equation (SDE) will be a random function. We
may distinguish four types of the Equation (1.1):

1. K does not involve stochastic elements and the initial conditions are
precisely known;
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2. K does not involve stochastic elements but the initial conditions are
random;

3. K involves random force functions; or
4. K involves random coefficients.

We treat types l - 3 in this text. In the case of types 1 and 2 the task
of solving (1.1) reduces to an integration. For type-3 problems, special pre-
cautions have to be taken, since the properties of the solution are developed
through probabilistic arguments. For simplicity, we assume for the remain-
der of this chapter that we are dealing with monatomic systems so that the
molecular interactions do not depend on the orientation of the molecules.
Furthermore, we will always deal with pair wise additive central-force inter-
actions. To stress once again the point made earlier, the technique is not
restricted to such systems. The inclusion of orientation-dependent interac-
tions and the constraints of connectivity would unnecessarily complicate the
exposition. In general, the system will be described by the Hamiltonian

H =
1
2

∑
i

p2
i

mi
+
∑
i<j

u(rij) (1.3)

where rij is the distance between the particles i and j. For ease of refer-
ence, we abbreviate the configurational internal energy as

U(r) =
∑
i<j

u(rij) (1.4)

Let the system consist of N particles. Since we restrict ourselves to prop-
erties of the bulk at a specific density ρ we must introduce a volume, the MD
cell, to retain a constant density. If the system is in thermal equilibrium, the
shape of the volume is irrelevant [?]. This is true, of course, for gases and
liquids in the limit where the volume is large enough. For systems in a crys-
talline state the shape does make a difference. For liquid or gaseous states we
take a cubic volume for computational simplicity. Let L be the linear size of
the MD cell with volume V = L3. The introduction of the box creates six un-
wanted surfaces. Particles hitting these surfaces would be reflected back into
the interior of the cell. Especially for systems with a small number of parti-
cles, important contributions to any property would come from the surfaces.
To reduce the effect of the surfaces we impose periodic boundary conditions
(pbc), i.e., the basic cell is identically repeated an infinite number of times.
Mathematically this is stated as follows. For any observable A we have

A(x) = A(x + nL), n = (n1, n2, n3) (1.5)

for all integers n1, n2, n3. The computational implementation is that if a
particle crosses a surface of the basic cell it re-enters through the opposite
wall with unchanged velocity. With the periodic boundary conditions we have
eliminated the surfaces and created a quasi-infinite volume to represent the
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macroscopic system more closely. The assumption involved is that the small
volume is embedded in an infinite block. Each component of a position vector
is represented by a number between zero and L. If particle i is at ri, there is
a set of image particles at positions ri + nL, n being an integer vector. Due
to the periodic boundary conditions the potential energy is affected because
we have

U(r1, r2, ..., rN ) =
∑
i<j

u(rij) +
∑

n

∑
i<j

u(
∣∣ri − rj + nL

∣∣) (1.6)

In order to avoid the infinite summation in the second term on the right-
hand side we introduce a convention about how the distances are computed
[3.20, 21].
Minimum Image Convention:

The distance rij between particle i at ri and particle j at rj is

rij = min
{∣∣ri − rj

∣∣+ nL
}

over all n

A particle in the basic cell interacts only with each of the N − 1 other
particles in the basic cell or their nearest images. In effect, we have cut off
the potential by the condition

rc <
L

2
(1.7)

The price to be paid is that we neglect the background. It would be more
realistic to include the interaction of each particle with all the image parti-
cles. An elegant procedure for doing so has been worked out by Ewald [3.22,
23]. The question of how the properties under computation are influenced is
not yet fully understood and remains to be investigated more closely. Bet-
ter understood are the boundary conditions applied within the Monte-Carlo
method. The value of L should be chosen so large that the forces that would
occur for distances larger than L/2 are negligibly small, to avoid finite-size
effects.

A cubic volume is, of course, not the only possible geometry to confine
the system and to conserve the density (Problem 3.1). Some applications, for
example crystallization, require different choices [3.24-27]. In any case, there
is a danger that the periodic boundary conditions impose a particular lattice
structure [3.28,29].
Integration Schemes

¿From a numerical-mathematics point of view the MD method is an initial
value problem. A host of algorithms have been developed [3.30,31] for this
problem, which are, however, not all applicable in the context of physical
problems. The reason is that many schemes require several evaluations of
the right-hand side of (1.1, storage of previous evaluations and/or iterations.
Specifically, assume that (1.1 was derived from the Hamiltonian (1.3), i.e.,
the equations of motion are
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m
dri

dt
= p

i
,

dp
i

dt
=
∑
i<j

F (rij) (1.8)

Each evaluation of the right-hand sides for the N particles takes N(N −
1)/2 quite time-consuming operations. To avoid this, simpler schemes are
employed which suffice in accuracy for most applications. The conservation
properties are also a problem, as we shall discuss below. To solve the equa-
tions of motion on a computer we construct a finite difference scheme for the
differential equations to the highest possible order. From the difference equa-
tions we then derive recursion relations for the positions and/or velocities
(momenta). These algorithms perform in a step-by-step way. At each step
approximations for the positions and velocities are obtained, first at time t1
then at t2 > t1, etc. Hence, the integration proceeds in the time direction
(time-integration algorithms). One also say that the simulation is time-driven
as opposed to event-driven. The recursion relation must clearly allow efficient
evaluation. In addition, the scheme must be numerically stable.

The most straightforward discretization of the differential equation stems
from the Taylor expansion. The idea is to base the algorithm on a discrete
version of the differential operator. With suitable assumptions we can expand
the variable z in a Taylor series

z(t + h) = z(t) +
n−1∑
i=1

hi

i!
z(i)(t) + Rn (1.9)

where Rn gives the error involved in the approximation.
Equation (1.9) allows an immediate construction of a difference scheme

(symmetric difference approximation) with a discretization error of the order
h. Let n = 2, then

dz(t)
dt

= h−1 [z(t + h)− z(t)] +O(h)

= h−1 [z(t)− z(t− h)] +O(h) (1.10)

These are the simplest schemes; the first we are familiar with from the
example in Chap.1. The top equation of 1.10 is called the forward difference
quotient and the lower equation the backward one. Using the forward differ-
ence we get the Euler algorithm [3.31] for the solution of the general problem
1.1) with the initial value zt, at the starting time t, i.e.,

z(t) = zt, z(t + h) = z(t) + hK(z(t), t) (1.11)

The Euler algorithm represents a typical example of a one-step method.
Such methods use the previous value as the only input parameter to determine
a new value. We shall now derive the error introduced by employing the
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algorithm. We have to distinguish between the local and the global error. Let
q(t) be the exact solution of

dq(t)
dt

= K(q(t), t) (1.12)

Define a function

µ(z, t, h) =
{

q(t+h)−z
h , h 6= 0,

K(z, t), h = 0

which is the difference quotient of the exact solution. The difference

τ(z, t, h) = µ(z, t, h)−K(z, t) (1.13)

measures the local discretization error. If

τ(z, t, h) = O (hp) (1.14)

then the method is of order p. The Euler algorithm has p = 1. We can go
even further and ask for the global discretization error. It can be shown [3.31]
that the global error is equal to the local error for the one-step method. So
far we have considered only one-step methods. A more sophisticated scheme
yielding a two-step method is immediately derived by using (3.9) with n = 3:

z(t + h) = z(t) + h
dz(t)
dt

+
1
2
h2 d2z(t)

dt2
+ R3

z(t− h) = z(t)− h
dz(t)
dt

+
1
2
h2 d2z(t)

dt2
+ R∗3 (1.15)

Note that R3 6= R∗3. Subtracting the second equation from the first, we
get

z(t + h) = z(t− h) + 2h
dz(t)
dt

+ R3 + R∗3 (1.16)

The error analysis shows that it is of order h3. Hence

dz(t)
dt

=
1
2h

[z(t + h)− z(t− h)] +O
(
h2
)

(1.17)

Using the same idea we obtain for the second derivative

z(2)(t) = h−2 [z(t + h)− 2z(t) + z(t− h)] +O
(
h2
)

(1.18)

Multi-step methods allow the construction of algorithms of high order.
Typical members of this class employed in simulational physics are those de-
veloped by Gear [3.33-35], Beeman [3.36], and Toxvaerd [3.37]. Such methods
(including the one-step) have the general form
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Figure 1.1. Configuration snapshot

z(t + rh) +
r−1∑
ν=0

aνz(t + νh) = hG(t; z(t + rh), ..., z(t);h) (1.19)

where G is some function of K, for example

G =
r∑

ν=0

bK(z(t + νh), t + νh) (1.20)

We distinguish between predictor and corrector schemes. In a predic-
tor scheme G does not depend on z(t + rh) whereas it does in a correc-
tor scheme. The Beeman algorithm, for example, is a third-order predictor-
corrector scheme.

Now that we have derived some algorithms to solve the equations of mo-
tion numerically, the question arises as to the choice of the basic time step
h (MD step). It determines the accuracy of the computed trajectory. Con-
sequently, h affects the accuracy of the computed properties, in addition to
the statistical error. But the choice of h is also important with regard to
the simulated real time. For many problems it is desired to simulate a fairly
long real time. The question is how large can the time step be? Consider,
for example, an argon system of N particles (a snapshot is shown in Fig-
ure 1.1, which will be the standard example in this chapter. The interaction
between the particles is assumed to be of the Lennard-Jones type. For the
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argon system a time step h ∝ 10−2 was found sufficient in most regions of the
phase diagram [3.6,7]. Here h is a dimensionless quantity and the real time
equivalent is roughly 10−14s. Hence, a simulation lasting 1000 steps yields a
real time equivalent of 10−11s.

In connection with the number of MD steps carried out, h determines
how much of the phase space is sampled. Naturally one would like to make
h as large as possible to sample large portions. However, h determines the
time scale, and we have to consider the time scale(s) on which changes in
the system occur. Some systems have several different scales. A molecular
system may have one time scale for intramolecular modes and another for
intermolecular modes.

One reason for energy fluctuations is the potential cut-off to be described
later. A second reason is the error entailed by the approximation. No matter
how high the order of an algorithm, the system will eventually depart from
the true trajectory, as long as h is finite. A drift in the energy δE is caused
by the finite time step, though the drift might be small.

¿From a more general point of view we can ask for the conservation prop-
erties of the algorithms. The energy, and the linear and angular momenta
should be conserved during the course of a molecular-dynamics simulation.
One way to establish conservation is to constrain the system artificially [3.37].
There is, however, a rigorous way of enforcing conservation [3.38-40]: Instead
of using forces to calculate the motion one should use the potentials. It can be
shown [3.39,40] that with this approach the energy, and the linear and angular
momenta remain constant if the algorithm is set up in a special form. Never-
theless, there is still the discretization error so that the computed trajectory
is not the ”true” one, even though the energy is conserved. The system will
follow an alternative path on the constant-energy surface. It is also required
that the potential is the true one. This is, however, not the case for a system
enclosed by a finite box. In addition, we may ask for the time-reversal proper-
ties. Interestingly enough, only the one-step method is invariant under time
reversal if we require that the equations define a canonical transformation
[3.41,42].

We return to the reason for energy fluctuations. Such fluctuations may
be produced due to the finite arithmetic of the computer as well as the finite
step width. Though rounding errors usually play a less important role than
the other phenomena, they nevertheless deserve consideration. Associated
with each arithmetic operation is a round-off error [3.43]. The result due to
an addition is obtained with finite precision so that the last digit is not the
true one. Rather, it is the result of rounding. An error is also created on
adding two quantities with quite different orders of magnitude (note that on
a computer the associative property of addition does not hold!). This can
occur in the calculation of the force acting on a particle. Imagine that at
least one particle exerts a strongly repelling force, some particles are near
the potential minimum giving only a negligible contribution, and the others
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are far away. Adding the smaller contributions to the dominant repelling force
will result in a loss of accuracy of some digits. However, if the summation
is carried out by first sorting the contributions according to their magnitude
and then summing, beginning with the smallest terms, significant digits are
secured.
Calculating Thermodynamic Quantities

In computer simulations of physical systems the ensemble average has to
be replaced by the time average. In conventional MD simulations the number
of particles, N , and the volume V are fixed. Strictly speaking the total linear
momentum is another conserved quantity. The total linear momentum is set
to zero to avoid motion of the system as a whole. From the equations of mo-
tion, given the initial positions rN (0) and momenta pN (0), a MD algorithm
generates the trajectory (r(0), rN (0)). Assuming that the energy is conserved
and that the trajectories spend equal time in all equal volumes with the same
energy, the trajectory average, defined as

Ā = lim
t′→∞

(t′ − t0)
−1
∫ t′

t0

dtA(rN (t), pN (t);V (t)) (1.21)

is equal to the microcanonical ensemble average

Ā = 〈A〉NV E (1.22)

In the following we shall always denote ensemble averages by < . > and
trajectory averages by an overscore. For later application we include a non-
constant volume in the definition. For now, the volume does not change in
time and has a definite value determined by the number of particles and the
density.

The total energy is a conserved quantity for an isolated system. Along any
trajectory generated by a molecular-dynamics simulation the energy should
remain constant, i.e., E = Ē. At this point we have to consider the range of
interaction. In general, the range will be longer than the length L of the side
of the MD cell and is cut off at rc < L/2. This natural cut-off is, however, not
the only one. For computational reasons the potential is usually truncated
at a convenient range to reduce the time spent in computing the potential
energy. Indeed, if no special precautions are taken 99% of the total execution
time required for one MD step can go into the computation of the potentials,
i.e., the forces required to propagate the particles.

The cut-off introduces a δ-function singularity in the forces at the point
of cut-off if the potential is not smoothly continued to zero. If the potential
is given in a tabulated form, this is readily implemented. But the effects of
the truncation on the properties of the system must be considered. In non-
equilibrium situations, for example metastable states occurring at first-order
phase transitions, the range is extremely important. It affects the relaxation
of the non-equilibrium into the equilibrium state [3.44, 45].
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The cut-off and the approximations made for the differential equations
of motion, together with numerical round-off errors, introduce a drift in the
energy. The trajectories are then not time reversible either.

The kinetic energy Ek and the potential energy U are not conserved
quantities for an isolated system. Their values vary from point to point along
the generated trajectory, and we have

Ēk = lim
t′→∞

(t′ − t0)
−1
∫ t′

t0

Ek(v(t))dt

Ū = lim
t′→∞

(t′ − t0)
−1
∫ t′

t0

U(r(t))dt (1.23)

Let us first look at the kinetic energy. The path generated is not contin-
uous and we have to take the average of the kinetic energy evaluated at the
discrete points ν in time

Ēk =
1

n− n0

n∑
ν>n0

Eν
k (1.24)

where

Eν
k =

N∑
i=1

3∑
l=1

1
2
m(v2

il)
ν (1.25)

¿From the mean kinetic energy we can compute the temperature of the
system. As will become apparent later, the temperature is an important quan-
tity to monitor, especially during the initial stages of a simulation. Recall that
we are interested in the computation of observables in the thermodynamic
limit. In this limit all ensembles are equal, and we can apply the equipartition
theorem:

If the Hamiltonian is given as in (1.1) we have

1
2
mv2

l =
1
2
kBT (1.26)

Since the system has three degrees of freedom per particle (for the moment
we ignore constraints such as zero total linear momentum), we obtain

Ēk =
3
2
NkBT (1.27)

Assume that the potential has been cut off at rc. The average internal
configurational energy is then given by

Ū =
1

n− n0

n∑
ν>n0

Uν (1.28)
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Figure 1.2. Shown are pair correlation functions for two parameter sets as obtained
from simulations. The left picture shows a high temperature state T ′ = 2.53 with
a density ρ = 0, 063 . The right shows the pair correlation function for T ′ = 0.722
and ρ = 0.831 (c.f. Example in the next section)

where

Uν =
∑
i<j

u(rν
ij) (1.29)

Due to the cut-off the total energy and the potential energy entail an error.
To estimate the necessary corrections we note that the potential energy is,
in general, given by

U

N
=

1
2

rho

∫
V

u(r)g(r)d3r = 2πρ

∫ ∞

0

u(r)g(r)r2dr (1.30)

where g(r) is the pair correlation function and measures the time-
independent correlations among the particles. To be precise, g(r)d3r is the
probability that a particle is found in the volume element dr surrounding
r when there is a particle at the origin r = 0. In a homogenous system
g(r) = g(r). Let n(r) be the average number of particles situated at a dis-
tance between r and r + ∆r from a given particle, then

g(r) =
V

N

n(r)
4πr2∆r

(1.31)

The pair correlation function is easily computed during a simulation. All
the distances are available anyway from the calculation of the forces. Since
g(r) is time independent one can perform a time average. Figure 1.2 shows
g(r) for argon at two points of the phase diagram, as obtained by MD sim-
ulations. The pair correlation function is only meaningfully calculated for
distances roughly less than half of the linear size of the MD cell. In (???) all
the internal configurational energies are summed up to the cut-off distance.
For the tail correction we can take

Uc = 2πρ

∫ ∞

rc

u(r)g(r)r2dr (1.32)

Instead of actually taking g(r) as computed during a simulation, one can
also assume that the pair correlation function is identical to unity. The error
made in such an approximation will be small if the potential cut-off was
not chosen too small. For the results shown in Figure 1.2 the potential was
a Lennard-Jonesian one with a cut-off to the right of the second peak, as
indicated by the arrows. There, the pair correlation function is not too far
off unity and will stay so for the range extending to infinity. A tail correction
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is also necessary for other quantities. As an example we take the calculation
of the pressure P for which the virial equation of state holds [3.19]:

P = ρkBT − ρ2

6

∫ ∞

0

g(r)
∂u

∂r
4πr3dr (1.33)

As for the computation of the potential energy, we split the integral into
a term due to the contributions within the interaction range and a term to
correct for the truncation:

R = ρkBT −

〈
ρ

6N

∑
i<j

rij
∂u

∂rij

〉
+ Pc (1.34)

The long-range correction is

Pc =
ρ2

6

∫ ∞

rc

g(r)
∂u

∂r
4πr3dr (1.35)

In the example of the next section the significance of the corrections to the
various quantities will be appreciated. They can amount to several percent.
Organisation of a Simulation

The actual computer simulation of a molecular system can be broken up
in- to three parts:

1. Initialisation
2. Equilibration
3. Production.

The first part of a simulation is the assignment of the initial conditions.
Depending on the algorithm, different sets are required. An algorithm may
need two sets of co-ordinates, one at time zero and one for the previous time
step. For the moment assume that to start an algorithm we need the positions
and the velocities. The problem one is faced with immediately is that, in
general, the initial conditions are not known. Indeed, this is the starting point
for a statistical-mechanics treatment! For the computer-simulation approach
there are various possible assignments. For definiteness let the initial positions
be on a lattice and the velocities drawn from a Boltzmann distribution. The
precise choice of the initial conditions is irrelevant, since ultimately the system
will lose all memory of the initial state.

A system set up, as outlined above, will not have the desired energy.
Secondly, most probably the state does not correspond to an equilibrium
state. To promote the system to equilibrium we need the equilibration phase.
In this phase, energy is either added or removed until the energy has reached
the required value. Energy may be removed or added by stepping the kinetic
energy down or up. The system is now allowed to relax into equilibrium
by integrating forward the equations of motion for a number of time steps.
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Equilibrium is established if the system has settled to definite mean values
of the kinetic and potential energies.

We can identify at least two potential problems arising in the first two
steps. One problem concerns the relaxation time of the system. The basic time
step h determines the real time of the simulation. If the intrinsic relaxation
time is long, many steps are required in order for the system to reach equi-
librium. For some systems the number of time steps may be prohibitively
large for the present speed of computers. However, it is possible in some
circumstances to circumvent the difficulty by an appropriate scaling of the
variables. Examples of where this is possible are systems near second-order
phase transitions.

In connection with the relaxation time one has to face the possibility that
the system is trapped in a metastable state. Long-lived metastable states may
not show an appreciable drift in the kinetic or potential energy. Especially
for systems investigated near two-phase coexistence, say between liquid and
gas, this danger arises.

The second potential problem is that the system might have been set up
in an irrelevant part of the phase space. This problem can be handled by
performing simulations with different initial conditions and different lengths.

The actual computation of the quantities is done in the third part of the
simulation. In the production part all quantities of interest are computed
along the trajectory of the system in phase space.

In the following we shall study particular algorithms. First we look at
methods to deal with the constant energy, constant particle number and con-
stant volume cases. Then we study ways of incorporating into the equations
of motion constraints allowing a simulation of a constant temperature rather
than of a constant energy. This will follow a discussion of how to compute
properties in a constant pressure ensemble.

1.1.1 Microcanonical Ensemble Molecular Dynamics

The basic molecular dynamics algorithm with conserved energy is introduced.
We proceed by developing a computational method to propagate a system

along a path of constant energy in the phase space. The starting point is
the Hamiltonian describing the interaction of N particles. For simplicity, we
assume, as before, a two-body potential with spherical symmetry

H =
1
2

∑
i

1
m

p2
i +

∑
i<j

u(rij) (1.36)

where rij denotes the distance between particle i and particle j. Time does
not enter explicitly into the equations. We are considering a system where
H = E is a constant of motion. In addition, we have a constant particle
number N , and the fourth constraint of zero total linear momentum P .
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In classical mechanics the Hamiltonian leads to various forms of the equa-
tions of motion. Depending on the choice, the algorithm to solve the equations
will have certain features. Though the equations of motion are mathemati-
cally equivalent they are not numerically equivalent. Here we start with the
Newtonian form

d2ri(t)
dt2

=
1
m

∑
i<j

F i(rij) (1.37)

Analytically, the solution of the system of second-order differential equa-
tions is obtained by integrating twice from time zero to t, to obtain first the
velocities and then the positions. Not only the initial positions are required
but also the initial velocities. The initial positions fix the contribution of
the potential energy to the total energy, and the velocities determine the ki-
netic energy contribution. With the specification of the initial conditions the
system moves along a path of constant energy in phase space.

To solve the differential equations numerically we use the discretization
(???) for the second-order differential operator on the left-hand side of (1.37)
to get the explicit central difference method

d2ri

dt2
=

1
h2

[ri(t + h)− 2ri(t) + ri(t− h)] =
1
m

F i(t) (1.38)

This equation provides a prescription for obtaining the positions of the
particles at time t + h from the positions at two immediately preceding time
steps t and t− h and the forces acting at time t. Solving for the positions at
time t + h we get

ri(t + h) = 2ri(t)− ri(t− h) + F i(t)h
2/m (1.39)

Let

tn = nh

rn
i = ri(tn)

Fn
i = F i(tn)

Then (1.39) assumes a more algorithmic form

rn+1
i = 2rn

i − rn−1
i + Fn

i h2/m (1.40)

Starting from positions r0
i and r1

i all subsequent positions are determined
by the above recursion relation. In other words, the positions of the parti-
cles at time n + 1 are extrapolated or predicted from the two immediately
preceding positions (two-step method).

In the above form the recursion relation produces only the positions. The
velocities, however, are needed for the calculation of the kinetic energy and,
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for example, the velocity auto-correlation function to study transport prop-
erties. Following the line of approach used so far, the velocities are computed
as, see (???),

vn
i =

(
rn+1

i − rn−1
i

)
/2h (1.41)

Notice that at the (n+1)-th step the computed velocities are those of the
previous time, i.e., the n-th step! Hence, the kinetic energy is one step be-
hind the computed potential energy. Equations (??) together with the initial
positions constitute the so-called Verlet algorithm [3.6,7].
Algorithm A2. NVE Molecular Dynamics

1. Specify positions r0
i and r1

i .
2. Compute the forces at time step n: Fn

i .
3. Compute the positions at time step n + 1 as in (3.34): rn+1

i .
4. Compute the velocities at time step n as in (3.35): vn

i .

One advantage of the above algorithm is its time reversibility. Running
the system backwards in time leads to the same equations. This is true only in
principle. Due to inevitable round-off errors of the finite precision arithmetic,
the trajectories depart from their original paths. At each time step there is
an addition of the form O(1)+O(h2), introducing a round-off error. Further,
the trajectory departs from the true one because of the finite step size.

In the form of the Verlet algorithm (Algorithm A2) the method is not self-
starting. Not only the initial positions must be supplied but also one more
set of positions. Sometimes this comes in handy if one sets up a lattice for
the initial positions of the N particles and then perturbs it. If the positions
and the velocities are initial conditions, the following procedure can be used
to calculate the positions at r1

i :

r1
i = r0

i + hv0
i +

1
2m

h2F 0
i (1.42)

¿From then on the algorithm proceeds as presented. The Verlet algorithm
can be reformulated in such a way as to give a numerically more stable method
[3.30,46]. Define

zn
i =

rn+1
i − rn

i

h
(1.43)

The equations

rn
i = rn−1

i + hzn−1
i

zn
i = zn−1

i + m−1hFn
i (1.44)

are (mathematically) equivalent to () and are called the summed form. A
further reformulation yields the velocity form of the Verlet algorithm.
Algorithm A3. NVE MD Velocity Form



16 1. Deterministic Methods

1. Specify the initial positions r1
i .

2. Specify the initial velocities v1
i .

3. Compute the positions at time step n + 1 as

rn+1
i = 2rn

i − rn−1
i + Fn

i h2/m

4. Compute the velocities at time step n+1 as

vn+1
i = vn

i + h(Fn+1
i + Fn

i )/m

The above algorithm is superior to the original one in many ways. Notably,
we have succeeded in having the positions and the velocities for the same
time step; secondly, the numerical stability is enhanced, which is extremely
important for long runs. Yet another feature will show up when we discuss
algorithms for the constant temperature ensemble.

In general, one does not know the precise initial conditions corresponding
to a given energy. To adjust the system to a given energy, reasonable ini-
tial conditions are supplied and then energy is either drained or added. The
procedure is carried out until the system reaches the desired state. For the
equilibration phase in the Verlet algorithm, or its variant velocity forms, this
is accomplished by an ad hoc scaling of the velocities [3.47]. Such a scaling
can introduce large changes in the velocities. To eliminate possible effects the
system must be given time to establish equilibrium again. Algorithmically
the equilibration phase looks like

1. Integrate the equations of motion for some time steps.
2. Compute the kinetic and potential energies.
3. If the energy is not equal to that desired, then scale the velocities.
4. Repeat from step l until the system has reached equilibrium.

The success of the procedure depends on the initial positions and the
distribution of the velocities. A common practice is to set up the system on
a lattice and assign velocities according to a Boltzmann distribution. Some-
times, instead of the velocities being scaled, they are all set to zero. In any
case, one has to check the velocity distribution after the equilibration phase
has been reached to make sure that it has the equilibrium Maxwell-Boltzmann
form.
Example 3.1

We study a monatomic system of particles in which the total energy is
fixed. In particular, we assume that the interaction between the particles is
well represented by a two-body central force interaction of the Lennard-Jones
type

u(rij) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

(1.45)
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where −ε is the minimum of the potential (ε specifies the units of energy),
which occurs when the distance r is equal to 21/6σ (σ specifies the units of
length). To be more specific we choose the values of ε and σ appropriate for
argon (Problems 3.5,6). We shall take N = 256 particles in a box of volume
V . Periodic boundary conditions are imposed to conserve the density. This
implies that we have to use the minimum image convention (3.2). The volume
and the number of particles together with the energy completely specify the
point in the phase diagram we wish to study. To advance the particles inside
the MD cell we need to know the forces acting on each particle. For the force
in the x-direction on the i-th particle exerted by the j-th particle we obtain
from (3.39)

Fx(rij) = 48
( ε

σ2

)
(xi − xj)

[(
σ

rij

)14

− 1
2

(
σ

rij

)8
]

(1.46)

and similarly for the y- and z-components. This form of the potential and
the force is, however, not suitable for a computer simulation. All quantities
are conveniently expressed in a scaled form. Time and positions are scaled
by (

mσ2

48ε

)1/2

, σ (1.47)

respectively (m is the mass of the argon atom). This renders the equations
dimensionless. Substituting the values for the argon atom into (3.41) the time
unit is 310−12s. To ensure a reasonable numerical stability the basic time
increment is taken to be h = 0.064 or 210−14s. The actual real time will be
fairly small since only a limited number of integration steps are possible.

We shall study the argon system at two points in the phase diagram:
(T ′, p∗) = (2.53, 0.636) and (0.722, 0.83134). For these values of the reduced
densities the linear MD cell sizes are L = 7.38 and L = 6.75, respectively.
With these specifications the program can be set up. We use the summed
form of the Verlet algorithm to advance the positions.

Initially we assignrandom positions of the atoms. To start the algorithm,
velocities are drawn at random and scaled for the appropriate temperature.
Since the MD cell should not move, we must assure a zero total linear mo-
mentum. This removes three degrees of freedom from the system and must
be taken into account in the calculation of the temperature.

At this point, consideration must be given to the computation of the
forces and the potential. To avoid the use of Ewald sums and to speed up the
calculation we truncate the potential. To study the effect of the cut-off we use
two values, rc = 2.5 and 3.6. The impact of the truncation on the execution
time is quite large. In going from rc = 2.5 to 3.6 the execution time doubles
for the densities considered here! The cut-off can further be appreciated by
noting that for rc = 2.5 roughly 80
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Figure 1.3. Evolution of the kinetic energy during a molecular dynamics simula-
tion. All quantities are given in reduced units

β =

[
T ∗ (N − 1) /16

∑
i

v2
i

]1/2

(1.48)

)
The procedure is repeated until the desired energy, or equivalently an

average temperature, is reached. In these particular simulations the equili-
bration was performed during the first 1000 MD steps. Figure 3.3 shows the
evolution of the kinetic energy for the case rc = 2.5, T ′ = 2.53, ρ = 0.636

Looking at the potential energy we observe that the overall relaxation of
the system is much slower in the case T ′ = 0.722.

To check that the system does indeed behave as expected, we look at the
distribution of the kinetic energy values encountered during the simulation.

The results of the simulation in the example represents one particular
realization out of a multitude of possible ones. Starting from a different set of
initial positions and velocities the system would have followed an alternative
path on the constant energy surface. Contenting ourselves with one path,
we rely on (3.21), i.e., that the trajectory average is equal to the ensemble
average. In principle we should have followed the path for an infinitely long
time to ensure that the system spends equal time in all equal volumes of the
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Figure 1.4. Distribution of the kinetic energy

phase space. The limitation of the finite computer time does not permit this.
We sampled some region in phase space, so it follows that there will be an
error involved in the results. It might be that the path sampled an irrelevant
part of the phase space. For example, the initial conditions might be such that
the system is set up in an irrelevant part. If the duration of the simulation is
too small, the system does not leave the irrelevant part, or only just enters
the relevant part. Simulations of different lengths must be made in order
to assess the error, i.e., to determine whether the asymptotic behaviour has
set in. These remarks also apply to the other methods presented in this text.
Apart from the accuracy and numerical-stability considerations, an important
factor in molecular dynamics simulations is the calculation of the force acting
on the particles. The integration steps require of order N operations. For
two-body additive central forces one has to evaluate kN(N − l) terms at
each step. To reduce the computational complexity we can ex- ploit the fact
that most of the terms in the evaluation turn out to be zero if the potential
has a cut-off. Only those terms where the particles are within the cut-off
range r, give contributions. By choosing a suitable radius r we can ensure
that only after n time steps does the number of particles inside this sphere
change [3.3,7,48] (Problem 3.7). Hence, producing a list of nearest neighbours
reduces the evaluation of the force term (???). Only those particles in the list
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Figure 1.5. Evolution of the potential energy during a molecular dynamics simu-
lation. All quantities are given in reduced units

of a given particle contribute. Every nth step the table must be updated. The
trade-off is, of course, computer storage. The ”Veriet table” has been used
successfully on general purpose computers. For vector machines the technique
has, however, drawbacks. A further discussion of time-saving techniques is
deferred to the appendix.

1.1.2 Canonical Ensemble Molecular Dynamics

Various possibilities are discussed for a simulation with a constant tempera-
ture, instead of constant energy. Presented are the velocity scaling, iso-kinetic
and damped force methods.

In the previous subsection we saw how the MD method solves the equa-
tions of motion numerically. The system under consideration was isolated, i.e.,
conservative, so the trajectory always stayed on a surface of constant energy
in phase space. In many circumstances it is desirable to investigate a sys-
tem along an isotherm rather than along a line of constant energy. Since the
equations of motion allow propagation only on the constant-energy surface
we have to modify the equations. The modification has to be such that the
system will be conceptually coupled to a heat bath. The heat bath introduces
the energy fluctuations which are necessary to keep a fixed temperature. Gen-
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Figure 1.6. Evolution of the pressure during a molecular dynamics simulation. All
quantities are given in reduced units

erally, observables appear as averages over an appropriate ensemble of similar
systems. The appropriate ensemble here, representing equilibrium of a sys-
tem in a heat bath, is the canonical ensemble, where the particle number N ,
the volume V and the temperature T are fixed, and there is zero total linear
momentum P as well as a zero total angular momentum L. Since the total
energy is not a conserved quantity for constant temperature, schemes have
to introduce fluctuations in the total energy E. However, the average kinetic
energy is a constant of motion due to its coupling with the temperature. Any
scheme has to satisfy the requirement that the average properties computed
along a trajectory must be equal to the ensemble average

〈A〉NV T = lim
t′→∞

1
t′ − t0

∫ t′

t0

A(rN (t), pN (t);V (t))dt (1.49)

One way of achieving energy fluctuations for a constant temperature is
to supplement the equations of motion with an equation of constraint. Al-
ternatively one can add to the forces in the equations of motion a force of
constraint (damped-force method) [3.50-55]. It can be shown [3.49] that the
damped-force method is a special case of the constraint method. An- other
possibility is that of immersing the system in a heat bath by introducing
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Figure 1.7. Evolution of the pressure during a molecular dynamics simulation. All
quantities are given in reduced units

a stochastic force simulating collisions with virtual particles. Later we take
up the idea of stochastic supplements to the equations of motion. A natural
choice for the constraint is to fix the kinetic energy to a given value dur-
ing the course of a simulation. Such a constraint may be the non-holonomic
constraint [3.49]

Λ =
1
2

∑
i

mv2
i = const (1.50)

(isokinetic MD) or one may take the total kinetic energy proportional to
time with a vanishing proportionality constant if the system has reached a
constant temperature (Gaussian isokinetic MD) [3.56]

1
2

∑
i

mv2
i = αt (1.51)

Below, we shall adopt the iso-kinetic approach. Note that only the average
temperature is fixed. We have already encountered a method to constrain the
kinetic energy to a given value. To equilibrate the system, energy was drained
or added by an ad hoc scaling of the velocities [3.47,57,58]. After reaching
the desired energy or temperature the system was left to itself.
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The functions g and gz denote the recursion relations. Note that gz can
involve an additional dependence on the force at time n+l. In this case step
1 is introduced between 2 and 3. A bypass of step 5 is created after the
equilibration phase. In the ad hoc velocity scaling method step 5 remains
within the flow of the algorithm and scales the velocities at every time step.
What is the appropriate scaling factor p? The system has 3N degrees of
freedom. However, we require the system to have zero total linear momentum,
so removing three degrees of freedom. The constraint of constant kinetic
energy removes one more degree of freedom. Hence, the scaling factor

(3.46)
so that after the scaling step we have
Traditionally a weighting factor 3N has been used instead of 3N-4. The

reason is that there are several problems associated with the procedure, mak-
ing it non-exact, although, as we will see later, it is exact in its differential
form. To reveal why it is not exact, let us study the ad hoc scaling within
the leapfrog formulation of the Verlet algorithm (Problem 3.4)

(3.47)
Assume that the scaling factor was computed from the previous half-step

velocity
(3.48)
cast into the following form, assuming a velocity form of the integration

procedure (Algorithm A3 and Problem 3.4), i.e.,
don= 1, max 1. Compute the forces. 2. Compute r”+’ = g,(r”,v”,F”). 3.

Compute v”+’ = g (v”, F”, (F”+’) ) . 4. Compute the kinetic energy. 5.
Scale the velocities v”+’ v”+’. time step loop end time step loop

The functions g and gz denote the recursion relations. Note that gz can
involve an additional dependence on the force at time n+l. In this case step
1 is introduced between 2 and 3. A bypass of step 5 is created after the
equilibration phase. In the ad hoc velocity scaling method step 5 remains
within the flow of the algorithm and scales the velocities at every time step.
What is the appropriate scaling factor p? The system has 3N degrees of
freedom. However, we require the system to have zero total linear momentum,
so removing three degrees of freedom. The constraint of constant kin- etic
energy removes one more degree of freedom. Hence, the scaling factor (3.46)

so that after the scaling step we have
Traditionally a weighting factor 3N has been used instead of 3N-4. The

reason is that there are several problems associated with the procedure, mak-
ing it non-exact, although, as we will see later, it is exact in its differential
form. To reveal why it is not exact, let us study the ad hoc scaling within
the leapfrog formulation of the Verlet algorithm (Problem 3.4)

(3.47)
Assume that the scaling factor was computed from the previous half- step

velocity
(3.48)
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(3.52)
yielding unconstrained equations of motion
(3.53)
with a new Lagrangian Z’ = Z-V. To proceed we assume a simple form of

V as a product of two functions
(3.54)
We imagine that p represents the mechanism of energy transfer between

the system and the reservoir. The function ( ensures the fulfilment of the
con- straint. The detailed mechanism has still to be specified. With (3.54)
the equations of motion are calculated as

(3.55)
where p; = BZ’/Br;. Let us now exploit the arbitrariness in the mechanism

of energy transfer and assume that p is a function of the velocities only and
that formally p is zero

(3.56)
The equations of motion reduce to
(3.57) An obvious choice for p, of course, is to take the constraint itself
(3.58)
so that the equations of motion become
(3.59)
We see that the introduction of energy fluctuations through a generalised

potential with a specific choice of the detailed coupling leads to the velocity
scaling mechanism. To constrain the kinetic energy a feedback loop is estab-
lished. A problem arises when we discretize the differential equations. The
discretization introduces a time delay in the feedback loop, leading to fluctu-
ations in the average kinetic energy. Interestingly, the second possibility leads
to a scaling mechanism, too. If one assumes a generalised force of the type

(3.60)
with the specific choice
(3.61)
one finds
(3.62)
For n = 1 the equations of motion are those obtained by Hoover et al.

[3.51-55]. In this case the equations of motion conform with the Gauss prin-
ciple of least constraint [3.59,64]. Note that p does not reference the required
temperature so that the initial conditions must be chosen in accordance with
the constraint.

Example 3.2 In Example 3.1 (Sect.3.1.1) we studied a monatomic system
consisting of 256 particles interacting with a Lennard- Jones potential. The
simulation proceeded in such a way that energy was added or removed until
a desired energy was achieved, corresponding to an average temperature.
The energy remained constant during the rest of the simulation. To keep
the temperature fixed and let the total internal energy fluctuate, the system
must be brought in contact with a heat bath. One way of achieving this
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is to constrain the kinetic energy to a fixed value during the course of the
simulation.

Fig.3.7. Shown is the evolution of the (reduced) kinetic energy computed
after the scaling of the minus half step velocities in the leap frog formulation
of the Verlet algorithm. Time is given in molecular dynamics steps In the
text we discussed two possible implementations. The first was to rescale the
”minus half-step velocities” of the leapfrog algorithm at every time step.
Figure 3.7 shows the kinetic energy calculated after the scaling and after the
”plus half-step velocities” were computed. Evidently the kinetic energy is not
stationary. There are over- and under-shootings due to the time delay in the
feedback loop. This is also the case if one applies the summed form of the
Verlet algorithm. However, the fluctuations are somewhat less significant.

Table 3.2. Results from isokinetic molecular dynamic simulations for the
reduced potential energy. r, gives the cut-off of the Lennard-Jones potential

Fig.3.8. Reduced potential energy as a function of time (MD steps) ob-
served in the isokinetic MD using the summed form algorithm

It is also instructive to observe the different behaviour in the relaxation
of the potential energy (Fig.3.8). To compare the results for the constant en-
ergy with the iso-kinetic simulations, the system was prepared with exactly
the same initial conditions for the positions and the velocities. A summary
of the results is given in Table 3.2. A glance at this table shows that there
is no observable difference for the high- and low-temperature states. The av-
erage potential energies, computed during the second half of altogether 2000
steps, agree within the statistical uncertainty. Hence such thermodynamic
variables are unaffected by the scaling. It has been shown that the static
properties computed along a trajectory indeed conform to the canonical en-
semble averages [3.60-63]. Also the results from the above example bear out
that static properties are invariant. The question neglected so far is how are
the dynamic properties of the system influenced by any of the schemes? We
may ask whether the transport properties are affected by the changes in the
velocities imposed by the scaling. Clear-cut evidence from simulations does
not exist yet. From an ”experimental” point of view, possible effects due to
the scaling are hard to disentangle from effects coming from the boundary
condition imposed on the system. Furthermore, other finite-size effects are
possible, not forget- ting the potential cut-off. Also, analytically, no proof
has been given that the algorithm becomes exact in the limit of infinite time.

1.1.3 Isothermal-Isobaric Knsemble Molecular Dynamics

Two algorithms are given for a simulation in which the temperature and the
pressure are held constant.

A constant temperature and/or constant pressure molecular dynamics
method is interesting not only from a theoretical point of view. The computa-
tion and the comparison of certain quantities with experimental observations
sometimes require such an ensemble. One example is, of course, the specific
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heat C at constant pressure. Let us begin with the constant pressure case. For
the isolated N -particle system the energy E and the volume V are the inde-
pendent variables. If we fix the pressure, then the volume, being the variable
conjugate to the pressure, must be allowed to fluctuate. The system is not
isolated anymore but in contact with the exterior. Assume that the transfer
between the system and the exterior is adiabatic. In this situation, having
a constant particle number N and constant pressure P , the total internal
energy is not conserved. The conserved quantity is the enthalpy H

H = E + PEV (1.52)

Here, PE is the externally applied pressure. In mechanical equilibrium the
external pressure and the internal pressure are equal. What we are dealing
with is the isobaric-isoenthalpic ensemble (N,P, H). As was the case for the
canonical ensemble, we have to modify the equations of motion to allow for
the constant pressure. Any modification has to be such that the average
properties computed along the generated trajectory are those of the isobaric-
isoenthalpic ensemble

〈A〉NPH = lim
t′→∞

1
t′ − t0

∫ t′

t0

dtA(rN , vN ;V (t)) (1.53)

We shall keep a cubic volume and maintain periodic boundary condi-
tions. In principle, shape fluctuations could be allowed [50, 51, 52, 53] which
are important for crystal structures, but the formulae would become unduly
complicated.

To make the volume fluctuations possible we introduce the volume V
as a new dynamical variable. As such it is also assigned a mass M . To de-
velop equations of motion for the particles and the volume we further take
PV as the potential energy corresponding to the new dynamic variable [?]
[3.59,65,66]. The Lagrangian now looks like

L(r, ṙ, V, V̇ ) =
1
2

∑
i

mṙi
2 − U(r) +

1
2
MV̇ + PEV (1.54)

Of course, the variables r and V are not coupled. To proceed we appeal
to intuition. If the system is subjected to pressure, the distances between
the particles will change. Conversely, if the distances change, the pressure
changes. The crucial step is the replacement of the coordinates ri of the
particles by the scaled coordinates ρi i.e.,

ρi =
ri

V 1/3
=

ri

L
(1.55)

Now all components of the position vectors of the particles are dimen-
sionless numbers within the unit interval [0, 1]. With the transformation, the
integrals of ri over the fluctuating volume V become integrals of ρi over the
unit cube. Having written down (1.55) we have made the implicit assumption
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that each spatial point responds in the same way. Due to this, there is no
consistent physical interpretation of the approach.

The equation (1.55) couples the dynamical variables r to the volume.
Taking the first time derivative we obtain

ṙi = Lρ̇
i
+ ρL̇ (1.56)

In equilibrium, the changes in the volume can be regarded as slow. There-
fore we may assume

pi

m
= Lρ̇

i
(1.57)

as the momentum conjugate to ρi and the Lagrangian becomes

L(ρ, ρ̇, V, V̇ ) =
1
2
L2
∑

i

mρ̇
i
2 − U(Lρ) +

1
2
MV̇ 2 − PEV (1.58)

Recall that we anticipate possible effects on the intrinsic dynamics when
we modify the equations. However, the static properties should not be af-
fected. Concerning this point, note that the potential energy does not in-
volve the new coordinates ρ but the true r. In a somewhat loose way the
Hamiltonian of the system is formulated as [3.65,66]

H =
1
2
L2
∑

i

mρ̇
i
2 + U(Lρ) +

1
2
MV̇ 2 + PEV (1.59)

Here M is still a free parameter, about which we will have more to say
later. Having set up the Hamiltonian the next task is to derive the equations
of motion for the particles and the volume. These equations will now be
coupled. In the Newtonian formulation they are

d2ρ̇
i

dt2
=

Fi

mL
− 2

3
ρ̇

i

(
V̇

V

)
,

d2V

dt2
=

P − PE

M
(1.60)

with the pressure P computed from the virial

P =
1

3L

∑
i

mρ̇2
i +

∑
i<j

rijFij

 (1.61)

These equations yield a constant average pressure. We have two frames to
consider. The first is the frame with the original coordinates. The calculation
of the forces, the energy and other structural quantities must be carried out
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in this frame. The second frame with the scaled coordinates is needed for the
evolution of the system.

For (1.60 and ??) we can immediately write down an algorithm. What is
needed are only minor modifications of the summed form algorithm. There is,
however, a problem due to the appearance of the first derivative of the posi-
tion on the right-hand side of (1.60). Recall that the algorithm was developed
for equations of the form

d2r

dt2
= f(r) (1.62)

Assuming that the algorithm is still numerically stable with the inclusion
of a first derivative, i.e. a velocity, on the right-hand side, we obtain for the
positions and the volume at time n + 1

ρn+1 = ρn + hṗn +
1
2

h2Fn

mLn
− 1

2
h2ρn V̇ n

V n

V n+1 = V n + hV̇ n +
1

2M
h2 (Pn − PE) (1.63)

To compute the velocities and the volume velocity we take first the partial
velocities

hρ̇′
n+1

= hρ̇n +
1
2

h2Fn

mLn
− 1

2
h2ρ̇n V̇ n

V n

hV̇ ′n+1
= hV̇ n +

1
2M

h2 (Pn − PE) (1.64)

The next step is to compute 1
2h2Fn+1 and

∑
rijF (rij). At this stage an-

other problem presents itself. To compute the pressure at the (n + 1)th step
the velocities of the (n + 1)th step are required! To circumvent the computa-
tion of an extrapolation we simply take the partial velocities to estimate the
kinetic energy. Using this approximation the velocities are

hV̇ n+1 = hV̇ ′n+1
+

1
2M

h2
(
Pn+1 − PE

)
hρ̇n+1 = hρ̇′

n+1
+

1
2

h2Fn+1

mLn+1
− 1

2
h2ρ̇′

n+1 V̇ n+1

V n+1
(1.65)

Note that there is no rigorous proof for the validity of the procedure.
Let us formulate the algorithm developed as:

Algorithm A5. NPH Molecular Dynamics

1. Specify the initial positions and velocities.
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2. Specify an initial volume V 0 consistent with the required density.
3. Specify an initial velocity for the volume, for example V̇ = 0.
4. Compute ρn+1 and V n+1 according to (1.63).
5. Compute the partial velocities for the particles and the volume according

to (1.64).
6. Compute the forces and the potential part of the virial.
7. Compute the pressure Pn+1 using the partial velocities.
8. Compute the volume velocity.
9. Compute the particle velocities using the partial velocities.

We shall investigate the algorithm in the following example.

Example 4.3
As a system to test the Algorithm A5 we choose again argon with N = 256

particles and a potential cut-off at rc = 2.5. The initial conditions for the posi-
tions and the velocities are identical to those in the previous examples. As the
reference temperature we take T ∗ = 2.53 and the initial density p∗ = 0.636.
To equilibrate the system energy, i.e., to arrive at the reference temperature,
all velocities are rescaled every 50th step.

We now have to consider the choice of the mass M . Notice from Fig 1.8
that the initial pressure is negative. Hence the initial conditions are such
that the system would like to contract. A negative pressure is not unphysical
since the initial conditions, in general, do not correspond to equilibrium. At
equilibrium the pressure has to be positive. On choosing a mass which is too
small, the contraction results in a catastrophic overshooting of the volume.
A similar observation was made by Smith [3.67]. In the particular examples
depicted in Figs ?? the mass M∗ is 0.01 (notice that the mass M is a reduced
mass; M∗ = Mρ4/m). On the other hand, if the mass is too large the system
develops long-wavelength fluctuations in the volume [3.66]. In the case studied
here the system also shows fluctuations extending over many MD steps. This
is, indeed, expected for any finite M [3.65]. The value of M determines the
time scale for the volume fluctuations.

The relaxation behaviour of the pressure is interesting (Fig. 1.8). The
initial large fluctuations decay very rapidly. Looking at the average reduced
pressure, i.e., the average as a function of time, we see that the settling to a
constant pressure sets in very early. However, there are still fluctuations.

The magnitude of these depends on the chosen mass M∗ [3.66].
In the NPH molecular-dynamics algorithm there is one free parameter M .

In the example we saw that its magnitude influences the relaxation to equilib-
rium. Not only are the pressure and the volume affected but also the kinetic
energy [3.66] (note that in equilibrium the pressure relaxes more rapidly than
the temperature [3.19]). Unfortunately there is no criterion available for an
appropriate choice. Indeed, it is difficult to develop such a criterion. As seen in
the example, M must depend on the precise initial conditions. Furthermore,
it is not yet established how far dynamical properties of the system, such as



30 1. Deterministic Methods

Figure 1.8. The right figure shows how the internal pressure relaxes towards the
value given by the external pressure. In the left plot is shown the average of the
pressure

transport coefficients, are affected by the magnitude of M. Static properties
are independent of M [3.65,66]. To keep the impact as small as possible M
has to be small. It is therefore desirable to have an algorithm which changes
M from step to step. Ini- tially M should be large, to compensate negative
pressures, and gradually decrease as the system equilibrates. It follows that
M should be coupled to the pressure difference. Up to now we have consid-
ered an ensemble where the particle number, the pressure and the enthalpy
are the independent thermodynamic variables. Such an isobaric-isoenthalpic
ensemble is rather unusual and instead of a constant enthalpy we introduce
now a constant temperature.

We can achieve a constant temperature during the MD simulation by
rescaling all the velocities at every time step. This constrains the kinetic en-
ergy to a fixed value and gives a desired temperature (Algorithm A4). The
same idea can be used also for the (N,P, T )-ensemble algorithm. We combine
the algorithm described above for constant pressure with velocity scaling.

Algorithm A6. NPT Molecular Dynamics
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Figure 1.9. Shown is the evolution of the volume during the initial phase of a
constant pressure MD simulation

1. As in Algorithm A5.
2. Rescale all velocities as in step 8 of Algorithm A5.

Indeed, Algorithm A6 requires only a trivial change, since the only modi-
fication one has to make is to proceed with the equilibration phase, with the
scaling being performed at each step, until the end of the simulation.

1.2 Density Functional Method

1.3 Problems

• 3.1 The truncated octahedron boundary condition [3.68,69] is obtained by
cutting off the corners of a cube of side 2A until half its volume 253.83

• 3.11. Total internal energy E’ as a function of time (MD-steps) reduced
total energg -Z83.76 liD - Step ees

• In Sect.3.1.2 we achieved a constant temperature during the MD sim- ula-
tion by rescaling all the velocities at every time step. This constrains the
kinetic energy to a fixed value and gives a desired temperature (Algorithm



32 1. Deterministic Methods

A4). The same idea can be used also for the (N, P, T) ensemble algorithm.
We combine the algorithm described above for constant pressure with velo-
city scaling. Algorithm A6. NPT Molecular Dynamics 1-9. As in Algorithm
AS. 10. Rescale all velocities as in step 8 of Algorithm A5. Indeed, Algo-
rithm A6 requires only a trivial change, since the only modification one
has to make is to proceed with the equilibration phase, with the scaling
being performed at each step, until the end of the simula- tion. Example
3.4 The conditions in this example are exactly the same as in the preced-
ing one. Instead of performing the scaling at every 50th step, the scaling
is done every step. In Fig.3.11 the total internal energy E’ = E *+U’ is
shown. As in the example of Sect.3.1.2 the energy relaxes very quickly. A
quick relaxation is also seen in the pressure (Fig.3.12) and in the volume
(Fig.3.13). O

• The truncated octahedron boundary condition [3.68,69] is obtained by cut-
ting off the corners of a cube of side 2A until half its volume 253.83
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