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Abstract

I In the past few years, a lot of work has been done on simulating Boolean Circuits [3] [13] [18] [19] [21].
Most of them start from the inputs and go through all the gates in order to generate the output. Then,
a detection method will be utilized for checking the final answer. This paper proposes a new method for
simulating Boolean circuits based on primer extension and DNA cleavage. The specialty of this method is
that it reverse the direction of the operation. It starts from the output and goes back to the output. The
advantage of this method is that it takes advantage of the huge memory of DNA computer to allow the
variation of the inputs. The method not only allow simulation of many levels of large Boolean circuits in a
single test tube, but also allows many operations to be finished in parallel.

1 Introduction

I will write this introduction later.
//Frank The conventional method of solving NP problems with DNA consist of two phases as proposed by

Adleman [1]. The first phase is to generate a pool of all possible solutions with DNA molecules, and the next
phase is to select DNA moecules representing the answer from the pool according to the solution condisions.

Although there are a flood of ideas about using DNA computers to solve difficult computing problems [2]
[15] [22] [14] since Adleman [1] and Lipton [15] presented their ideas, most of them are using DNA strands in
solution. They all take advantage of the massive parallelism available in DNA computers as one liter of water
can hold 1022 bases of DNA strands. Because they all let DNA strands float in solution, it is difficult to handle
samples and strands may get lost during some bio-operations.

A well developed method, in which the DNA strands are immobilized on a surface before any other operations,
is introduced to DNA computing area by Liu [17]. This method, which is called surface-based DNA computing,
first attaches a set of oligos to a surface (glass, silicon, gold, etc). They are then subjected to operations such
as hybridization from solution or exonuclease degradation, in order to extract the desired solution. This method
greatly reduces losses of DNA molecules during purification steps [17]. The surface-based chemistries have become
the standard for complex chemical syntheses and many other chemistries.

Although the surface-based DNA computer has been demonstrated as more reliable with low error rate and
easier to handle [8] [12] [17] [23], only a little research work about utilizing these properties of this kind of computer
has been presented [12]. This happens mainly because when the oligos are attached to a surface, we lose flexibility
due to the restriction that the oligos can not grow in the direction of the attachment on the surface. In order to
take advantage of the new mature method, algorithms of surface-based computing need to be developed.

In this paper, we present a new algorithm to be implemented on a surface-based DNA computer that will take
fully advantage of these special properties of low error rate. We will use the expanding symbolic determinants
problem as an example to show the advantage of our algorithm comparing with an existing algorithm based on
general DNA computer in solution. Both algorithms will be able to solve some intractable problems that are
unrealistic to be solved by current conventional electronic computers because of the intense computing power
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requirement. These problems are harder to solve than the problem in NP-Complete. Our algorithm has all the
advantages of surface-based computers over an existing algorithm introduced in [14].

The rest of the paper are organized as follows: the next section will explain the methodology, including
the logical and biological operations of surface-based DNA computers. The problem of expansion of symbolic
determinants and our algorithm to solve it will be presented in section 3. Section 4 will analyze our new surface-
based algorithm and the last section will conclude this paper.

//Frank

2 Algorithm

Our algorithm is based on the the breadth first search like Ogihara & Ray’s [?] and Hiroshi [?]. It creastes a
pool of only the final output representing 1 and 0 initially. Then, these assignments will be extended by variable
according to the preassigned condition.

Now we describe the algorithm in more detail. Let F be the output of a circuit with n Boolean inputs. Not
losing generality, we can assume that all the gates in the circuit of F are AND and OR gates. If any other gates
present, they can be replaced by using the DeMorgan’s Law. To simplify the explanation, all the AND gates are
two inputs gates and OR gates can have any number of inputs.

Preprocessing:
Make the final output gate an OR gate, like what is shown in Figure [?]. Initializing: Let F be as follows:
F1 = (m, n|mn = 1 = (0, 1), (1, 0), 1, 1) F0 = (m, n)|m|n = 0 = (0, 0)

Main loop: The following procedures are iterated from k=2 to k=n

3 DNA operations

//Frank
In this section, detailed operations of DNA will be discussed. We will talk about all these method one by one.

They include: synthesis, clease, etc.

3.1 Implementation

1. reset(S): It can also be called initialization. This step will generate all the strands for the following
operations. These strands in set S can be generated to represent either the same value or different values
according to the requirement.

2. mark(C, S): All strands in set S satisfying the constraint C are identified as marked. A strand satisfies
this constraint if and only if there is a number represented by a strand with bit i agrees with the bit value
specified in the constraint. If no constraint is given, all strands are marked [8].

3. unmark(): Unmark all the marked strands.

4. delete(C): All strands satisfying condition C are removed from set S where C ∈ {marked, unmarked}.

5. append(C, X): A word X represented by a strand segment is appended to all strands satisfying constraint
C. C can be defined as marked or unmarked. If the constraint is marked strands, a word X is appended to
all marked strands. Otherwise, a word X will be appended to all unmarked strands.

6. readout(C, S): This operation will select an element in S following criteria C. If no C is given, then an
element is selected randomly. We will use this step to obtain the expected answer.

//Frank
All these biological procedures have been tested by Hiroshi [?].
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3.2 Biological Implementation

In this section, we include the fundamental biological operations for our surface-based DNA computation model.

1. reset(S): The initialization operation used here is different from those widely used biological DNA opera-
tions described in [1] [2] [5] [10] [22]. All the strands generated are attached to a surface instead of floating
in the solution. In order to prepare all these necessary strands on the surface, both the surface and one end
of the oligonucleotides are specially prepared to enable this attachment. A good attachment chemistry is
necessary to ensure that the properly prepared oligonucleotides can be immobilized to the surface at a high
density and unwanted binding will not happen on the surface [8] [17] [16].

2. mark(C, S): Strands are marked simply by making them double-strands at the free end as all the strands
on the surface are single strands at the beginning. These single strands being added in to the container will
anneal with the strand segments that need to be marked. Partial double strands will be formed according
to the Watson-Crick(WC) complement rule [1] [15] [6].

3. unmark(): This biological operation can be implemented using the method introduced in [8]. Simply
washing the surface in distilled water and raising the temperature if necessary will obtain the resultant
container with only single strands attaching to the surface. Because with the absence of salt which stabilizes
the double strand bond, the complementary strands will denature from the oligonucleotides on the surface
and will be washed away.

4. delete(C): This operation can be achieved using some enzymes known as exonucleases which chew up DNA
molecules from the end. Detail of this operation is introduced in [8]. Exonucleases exist with specificity
for either the single or double stranded form. By picking different enzymes, marked (double strands) or
unmarked (single strands) can be destroyed selectively.

5. append(C, X): Different operations are used depending on whether marked or unmarked strands are going
to be appended. If X is going to be appended to all marked strands, the following bio-operations will be
used for appending. Since marked strands are double stranded at the free terminus, the append operation
can be implemented using the ligation at the free terminus. The method introduced in [8] can be used
here. More details may be found in [8]. To append to unmarked strands, simple hybridization of a splint
oligonucleotide followed by ligation as explained in [1] [15] may be used.

6. readout(C, S): This procedure will actually extract out the strand we are looking for. There are many
existing methods developed for solution based DNA computing readout [1] [6] [23]. In order to use these
methods, we have to detach the strands from the surface first. Some enzymes can recognize short sequences
of bases called restriction sites and cut the strand at that site when the sequence is double-stranded [8].
When the segment which is attaching to the surface contains this particular sequence, they can all be
detached from the surface when the enzyme is added in.

4 Implementation

In this section, the implementation of all these DNA operations will be necessary. The corresponding bio-
operations will be discussed.

4.1 Expansion of Symbolic Determinants Problem

We will use the expansion of symbolic determinants problem as an example to show how our surface-based DNA
computer can be used to solve hard problems that are unsolvable by currently electronic computers.

4.2 Surface-Based Algorithm

In order to make the process easy, we encode each item in the matrix aij by two parts: (aij) L and (aij) R while
all the (akj) L′s are with the same k but different j and all the (aik) R′s are with the same k but different i.
Using this coding method, all items from the same row will have the same left half code, and all the items from
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the same column will have the same right code. It seems like that we construct aij by combining ai and aj . So,
for example, a13 and a19 will be represented by the same left half segment but different right halves because they
are in the same row but different columns. For another example, a14 and a84 will have the same right half but
different left halves because they are in the same column but different rows. The following is an algorithm using
the methodology of the previous section. It can be accomplished as follows:

a-1 reset(S): A large amount of strands will be generated on the surface. All the strands are empty initially,
they only have the basic header to be annealed to the surface.

a-2 append(X, S): This will make the strands on the surface grow with X. The X here is aij 6= 0 while i is
initially set as one and j ∈ (1 : n). All the strands will grow by one unit and each will contain one item in the
first row. After the append operation finishes, wash the surface to get rid of all unnecessary strand segment
remained on the surface.

a-3 Repeat the above steps a-2 with i incremented by one until i reaches n. Now we have each strand should
represent n units while each unit is an item from one row. So, each strand should have n items from n
different rows.

a-4 mark(X, S): We mark all strands containing X and X is initially set as ai, the code for left half of each item
representing the row number, with i = 0.

a-5 delete(UM): Destroy all strands that are unmarked. This will eliminate those strands containing less than
n rows because no matter what i is, it represents a row and every strand should contain it.

a-6 Repeat the above steps a-4 and a-5 n times with different i’s while i ∈ (1 : n). This will guarantee that one
item from each row is contained in each strand.

a-7 Repeat the above steps a-4 and a-5 and a-6 with different aj ’s, the codes for the right half of each item
representing the column number, while j ∈ (1 : n). This is used to keep only those strands that have items
from each column and eliminate those that do not satisfy.

a-8 readout(S): Readout all the remaining strands on the surface and they will be the answer for the expansion
of our symbolic determinant. Each strand will contain one item from each row and one item from each
column.

5 Solving Boolean Circuit in Parallel

In this section, we are going to talk about how Boolean circuit can be implemented in DNA computer. Unlike
other Boolean circuits [19], our method starts from the output. Here we assume that all the logic gates are going
to be AND and OR gates. AND and OR gates are going to be show up at different levels interchangely. If there
is any other gates or these gates are not going to meet our specification, they can be converted to our circuits
following the DeMorgan’s law.

//Frank
The following is the procedure for solving the Boolean circuits:
1. The final output is y. It is the output of an OR gate. Just like what is shown in Figure 1. First of all, we

generates half tube of y=1 and half tube of y=0. Then merge them together.
2. There are four different cases that make y=1 and one case makes y=0 as shown in table
The complexity of this new algorithm is O(n) where n is the size of the matrix. In order to show the advantage

of our surface-based DNA computer, we need to analysis the traditional method for expanding the symbolic
determinants. The computing complexity of the traditional method is O(n!). Compare with the traditional
method, we have solved a problem harder than NP within linear steps. The advantage of using DNA computer
to solve the expansion of symbolic determinants problem is huge. Because the surface-based DNA technology is
used, the DNA computer will be more reliable with low error-rate.
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Figure 1: Example of a Boolean Circuit

Table 1: Boolean Table

m n y
0 0 0
0 1 1
1 0 1
1 1 1

6 Conclusion

In order to reduce the error rate, methods introduced in [24] [9] [11] [25]. All these methods tried to attack the
error generated during the biological procedures and some of them introduced some fault tolerant techniques. We
hope that errors which arise during our DNA computer operations can be dealt with by the given techniques.

//Frank
In this paper, we have proposed an algorithm to simulate the Boolean circuit from the output. Compare with

other given methods for simulating Boolean circuit [20], our method has more flexibility and could make the DNA
computer more cost effective.

Further research includes
Further research includes expanding the application of surface-based DNA computing in order to make DNA

computers more robust. With the goal of even lower error rate, we may combine the existing error-resistant
methods [4] [7] [9] [11] [24] [25] and the surface-based technology to achieve better results.
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