Simulating Boolean Circuits on a DNA Computer

Mitsunori Ogihara* Animesh Ray'

Abstract

We demonstrate that DNA computers can simulate Boolean cir-
cuits with a small overhead. Boolean circuits embody the notion of
massively parallel signal processing and are frequently encountered in
many parallel algorithms. Many tmportant problems such as sorting,
integer arithmetic, and matriz multiplication are known to be com-
putable by small size Boolean circuits much faster than by ordinary
sequential digital computers. This paper shows that DNA chemistry
allows one to simulate large semi-unbounded fan-in Boolean circuits
with a logarithmic slowdown in computation time. Also, for the class
NC!, the slowdown can be reduced to a constant. In this algorithm we
have encoded the inputs, the Boolean AND gates, and the OR gates
to DNA oligonucleotide sequences. We operate on the gates and the
inputs by standard molecular techniques of sequence-specific annealing,
ligation, separation by size, amplification, sequence-specific cleavage,
and detection by size. Additional steps of amplification are not neces-
sary for NC' circuits. The feasibility of the DNA algorithm has been
successfully tested on a small circuit by actual biochemical experiments.

1 Introduction

Adleman [Ad194], subsequently Lipton [Lip95] showed the potential of
Recombinant DNA-based combinatorial chemistry as a tool for solving com-
putationally difficult search problems. The massive parallelism of liquid
phase DNA chemistry, coupled with the encoding of information in DNA
strands, raises the hope for solving “intractable” problems. These novel

*Department of Computer Science, University of Rochester, Rochester, NY 14627.
email: ogihara@cs.rochester.edu. Supported in part by the National Science Foundation
Grants CCR-9701911 and CCR-9725021.

"Department of Biology, University of Rochester, Rochester, NY 14627. email:
ray@ar.biology.rochester.edu. Supported in part by the National Science Foundation
Grants MCB-9630402 and IBN-9728239.

approaches to computation also raise the question whether the DNA com-
puters as a devise for simulating existing massively parallel computation
models can go beyond the limit of digital computers.

Among many massively parallel computation models, typical are the
Parallel Random Access Machines (PRAM) and the Boolean circuits. In
the PRAM model, the computation is carried out by ordinary serial proces-
sors that have as storage a shared, global memory. The processors execute
individual programs. All processors can read from or write to the global
memory “in parallel” (at the same time), and depending on the outcome
of the simultaneous read and the simultaneous write, various PRAM mod-
els are defined. The complexity of a PRAM algorithm is measured by the
number of processors involved and the running time. Recently, Reif [Rei95]
formulated an abstract parallel DNA computation model, the Parallel As-
sociative Memory model (the PAM model, in short). The PAM model, in
addition to the standard Recombinant DNA operations, assumes an opera-
tion called PA-Match, which is a generalized form of ligation of long DNA
strands. Reif showed that the PAM model can simulate the Concurrent-
Read, Exclusive-Write PRAM model (the CREW PRAM model), with a
small time overhead. More precisely, a CREW PRAM algorithm running
in time T on P processors with the total memory size M can be simu-
lated by a Parallel Associative Memory algorithm with O(T + S) PA-Match
steps and O(Slog S) other steps, and with space polynomial in S. Here
S is log P + log M and the PA-Match steps are performed on O(S) length
strands.

On the other hand, in the Boolean circuit model, the computation is
carried out by a network of signal processors (called gates) computing simple
Boolean functions, the AND and the OR. These gates have no memory
and process their incoming signals only once during the computation. The
complexity of a Boolean circuit is measured by the size (the number of gates)
and the depth (the length of the longest directed path). Depending on the
input capacity of the AND and the OR, three Boolean circuit models are
defined. They are (i) the unbounded fan-in circuits (the input capacity is
unlimited for both the AND gate and the OR gate), (ii) the semi-unbounded
fan-in circuits (the input capacity is two for the AND and unlimited for the
OR), and (iii) the bounded fan-in circuits (the input capacity is two for both
the AND gate and the OR gate).

The present communication studies the DNA computer simulation of the
Boolean circuits. Our attention is on the following three issues: (1) the bio-
chemical operations that are assumed; (2) the efficiency of the simulations,

i.e., the cost functions (the time and the space) of the DNA simulation al-
gorithms expressed as the depth and the size of the circuits to be simulated;
(3) the maximum size of the circuits that the DNA algorithms can simulate.

The question on simulation efficiency was addressed in the past by
Reif [Rei95]. First, combined with the fact that Boolean circuits of size m
and depth d can be simulated by CREW PRAM algorithms with O(m logm)
processors in time O(dlogm) (see [SV84]), the results of Reif [Rei95] in-
dicate that the PAM model can simulate Boolean circuits of size m and
depth d in time O(dlogm + log? m) and space polynomial in m. How-
ever, this indirect analysis may be unsatisfactory, because simpler and
more accurate methods are possible if we directly attack circuit evalua-
tion problem. In particular, concerns have been expressed regarding ac-
curacy about the use of sequence-specific separation as employed in Reif’s
method. There has been much discussion on the feasibility of the “extract”
operation [Adl196, Rei95, BL95, KKW96] because its error rate, even with
the current best Recombinant DNA technique, is as large as 107% (see,
[ABL194]) which is high enough to fail the whole computation. Second,
Boneh et al. [BDLS96] presented a method for evaluating a Boolean cir-
cuit with many inputs. In this method, evaluation goes gate by gate, and
each DNA strand is the concatenation of the input bits and the values of
the Boolean gates that have been evaluated so far. In order to evaluate a
gate g, one uses sequence-specific separation with respect to input bits of
g and splits the strands input two groups depending the value of the gate,
then appends the pattern to represent the output of g. This approach by
Boneh et al. is in some sense orthogonal to the approach we are studying
in this present paper. Namely, although their method allows concurrent
evaluation of the circuit at different inputs, it requires time proportional to
the circuit size. Third, Beaver [Bea96] proposes a method for simulating
with DNA polynomial space bounded computation in polynomial time us-
ing site-directed DNA mutagenesis. Although this strong simulation results
provide a circuit evaluation method with the same efficiency as the one de-
rived from Reif’s result, we are skeptical about feasibility of the mutagenesis
operation. Finally, Winfree [Win96] proposes a method for simulating cel-
lular automata using annealing and ligation applied to crossed-strand DNA
junctions (Holliday junctions). As in the method by Beaver, this method
can provide an efficient evaluation of boolean circuits, but we have doubts
about its feasibility when applied to circuits of useful size.

Here we propose a method for simulating the semi-unbounded fan-in
Boolean circuit model by DNA computers without the extract operation

but still assuming DNA pattern matching of logarithmically long strands as
is done in the PAM model by Reif. This method enables us to evaluate a
boolean circuit at a single input in time proportional to the depth of the cir-
cuit. In our DNA algorithm, the separated strands are always much longer
than the others, e.g., 40-base strands are separated from 20-base strands.
This property allows us to conduct separation by gel electrophoresis, not
by extract. Gel electrophoresis is a well-established biochemical method for
ordering DNA strands according to the length. Adleman [Ad194] employed
this operation for detection and Lipton’s 3SAT algorithm [Lip95] uses it for
separating legitimate truth assignments from those that are not. In addition
to the separation by gel electrophoresis, our algorithm assumes appending
(by ligation), cleavage (by restriction enzymes), detection, and amplification
as the necessary biochemical operations. We show that, under the assump-
tion that the above biochemical operations are error-less, a semi-unbounded
fan-in circuit of depth d and size m can be simulated by a DNA computer
in time O(dlog F) and space O(mF), where F denotes the maximum fan-
out (the number of the outgoing edges from a gate) of the circuit. Since the
depth of semi-unbounded fan-in circuits is in general 2(logm), the efficiency
of our algorithm matches the bound in the afore-mentioned analysis from
Reif’s result. Our analysis may suggest that the fan-out will play a crucial
role when measuring the efficiency of circuit simulations on DNA computers.

The result gives us an added bonus: a real-time simulation of the class
NC! [Pip79]. NC! is the class of problems solved by bounded fan-in circuits
of O(logn) depth and polynomial-size. Many fundamental computational
problems from the integer arithmetic to sorting are known to belong to
this class [BCH86, AKS83]. We show that an NC! circuit of depth d can
be simulated on a DNA computer in 3d steps assuming only appending,
cleavage, detection, and separation by size.

We have performed an actual biochemical experiment wherein we have
attempted to compute the output of a circuit with four Boolean inputs, two
OR gates, and one AND gate. Preliminary results of this experiment are
reported here.

2 Simulating Semi-unbounded Fan-in Circuits

2.1 Semi-unbounded Fan-in Circuits

A semi-unbounded fan-in Boolean circuit of n inputs is a directed acyclic
graph with labeled nodes. There are exactly 2n nodes with indegree 0. These

nodes are called input gates and are labeled z1, ..., zy, Z1, ..., Tn. Other
nodes are labeled by one of A and V. The nodes with label A compute the
AND of at most two Boolean values while those with V compute the OR of
an arbitrary number of Boolean values. Nodes with outdegree 0 are called
output gates. On an input z = z; --- z,, € {0,1}", the gates of the circuits
evaluate to 0 or 1 according to the following rules:

e If gate g is an input gate with label z;, g evaluates to 1 if z; = 1 and
0 otherwise.

e If gate g is an input gate with label Z;, g evaluates to 1 if z; = 0 and
1 otherwise.

e If gate g is labeled V with incoming edges from gates hi, ..., hp,
g evaluates to 1 if h; evaluates to 1 for some 3,1 < i < m, and 0
otherwise.

o If gate ¢ is labeled A with incoming edges from gates h; and hg, ¢
evaluates to 1 if both h; and ho evaluate to 1 and 0 otherwise.

There are two complexity measures for Boolean circuits, the size and the
depth. The size of a circuit C, denoted by size(C), is the number of gates
in it and the depth of C, denoted by depth(C), is the length of the longest
directed path in it.

2.2 The Simulation

Let C be a circuit of depth d and size m and x = z1 --- x,, an input
to C. Let g1, +++, gm be the gates of C' and F the maximum outdegree of
the gates in C. For simplicity, we assume that C has only one output gate.
Prior to the actual run of the simulation, we fix for each 7,1 < i < m, a
pattern o[i] of DNA. The presence of o[i] will indicate that g; evaluates to 1.
These patterns will be designed so that they satisfy the following conditions:

e All of these patterns consist of a fixed number £ of DNA molecules.

e For every i # 5,1 < 4,5 < m, o[i] and o[j] as well as o[i] and o[j]
agree at less than one fourth positions.

Also, we select a restriction enzyme £ together with its cleavage pattern
a | B, and demand the following be satisfied:

e For all 4, o[i] starts with o and ends with § but has neither of these
patterns in the middle.

One may use results from the theory of error-correcting codes [vL91] to
discover the patterns to satisfy all these conditions. The determination may
be computationally intensive, but once the patterns are fixed, they can be
used for all other length n inputs. We introduce one more parameter P,
which is an upper bound on the population size of the DNA synthesis.

Our simulation proceeds from level 0 toward level d. We assume for every
k, that the following conditions hold after processing the gates at level k:

1. For every gate g; at level k, the test tube contains o[i] if and only if g;
evaluates to 1, and the number of copies of o[i] present is at most P.

2. For every gate g; at level k—1, at most F - P copies of o[i] are present.

3. For every gate g; at level either greater than k or less than k£ — 1, no
copies of o[i] are present.

4. All the strands contained in the test tubes are of length L.

Now we describe how the gates are simulated. In the description below, it
should be understood that by “pouring ¢[i]” we mean pouring a population
of the strand. We begin with the description of the simulation of the gates
at level 0, the input gates. We create a test tube so that the conditions (1)
through (4) are all satisfied. For each gate g; at level 0, we do the following;:

e If g; computes the positive form of some z;, then we will pour in the
test tube ofi] if and only z; = 1.

e If g; computes the negative form of some z;, then we will pour in the
test tube ofi] if and only z; = 0.

This requires only one step.

Next consider the gates at level k > 0. The simulation of the OR gates
are different from that of the AND gates. Let i1, ..., i, be the indices of
the gates at level £ — 1 and j1, ..., jp those of the gates at level k. We first
describe the OR case.

In the first step, we amplify the existing o[i;] to the amplitude of at
least F - P. One amplification step doubles the number of copies of any
strand present in the test tube. Thus, we have only to run (log F + log P)

amplification steps to achieve the desired amplitude, where the logarithm is
base 2.

In the second step, we execute appending. For each s,1 < s < b, we
pour o|js] into the test tube. Also, for each pair (i, js) such that there is an
edge from g;, to g;,, we pour a “linker” for binding o[i,] after ¢[js]. Then we
allow ligation. By condition (1), for every s,1 < s < b, g;, evaluates to 1 if
and only if some o[i,] such that g;, is an input to g;, is present. This implies
that g;, evaluates to 1 if and only if there exists some r such that o[i,] and
the linker between o[i,] and o[js] are both present when the ligation takes
place. We have already amplified any existing g;, to the amplitude of F - P
in the first step. The output of g;, is plugged into at most F distinct g;,. We
have poured into at most P copies of g;,. Thus, for each g;, that evaluates to
1, regardless of the combinations of the strands that are when ligation takes
place, at least one copy of o[js] is appended to some o[i,], thereby yielding
a length 2£ strand. On the other hand, for every g;, that evaluates to 0,
there exist no such strands to which the linkers can bound o[js]. Thus, no
strands of length 2£ ending with o[j;] are created. Furthermore, no strands
of length greater than 2L are created.

In the third step, we separate length 2L strands from length £ strands.
We use denaturing polyacrylamide gel electrophoresis [SFM89] for that
purpose. The strands of length 2L correspond to the gates that evaluate to
1.

In the fourth step, we cleave the length 2L strands at « | 3 by restriction
enzyme £. This step produces all the strands o[j,] such that g;, evaluates
to 1.

We estimate the number of strands that are present when the fourth step
has been finished. As to a gate g;, at level k, we have poured at most P
copies of o[js], so at most P copies of o[js] should be present. As to a gate
gi, at level k — 1, the copies of o[i,] are linked to at most F different o[j;]
and there are at most P copies of such a o[js], so at most F - P copies of 9i;
should be present. As to the strands for the gates at level below & — 1 level,
even if they may have existed prior to the processing of the gates at level &,
no linkers have been added to bind them to other strands, so none of them
will remain after the third step. Finally, as to the strands for the gates at
higher levels, we have not poured them yet. Hence, all the loop invariant
conditions are met.

Next we consider the AND case. The first step is identical to that of the
OR case. We amplify the strands from the previous level to the amplitude
of F - P. In the second step, we execute appending. For each AND gate g;,

7

at this level, we pour into the test tube o[js]. Also, for each triple (js, iq,r)
such that ¢ < r and that g;, takes as an input both g;, and g;,, we pour the
“linker” for appending o[js] after o[i;] and the one for appending o[i,] after
o[js]. Then we allow ligation. By an argument similar to that of the ligation
step for the OR case, we observe that a length 3£ strand with o[j,] in the
middle is created if and only if g;, outputs 1 and that the other strands
are of length either 2L or £. In the third step, we use electrophoresis to
separate the strands of length 3£ from those of length at most 2£. In the
fourth step, we cleave at « | [using the restriction enzyme £. Then, from
oligloljslolir], oljs] is produced. By following the discussion similar to the
OR case, we observe that the loop invariant conditions are all met.

At the end of the computation, namely when processing the level d (i.e.,
the output) gate, instead of the last two steps we execute gel electrophoresis
to find the output of the circuit. If the output gate is an OR gate, the
output is 1 if and only if length 2£ strands exist and if it is an AND gate,
the output is 1 if and only if length 3L strands exist.

The complezity analysis

Here we analyze the complexity of the simulation described above. Liga-
tion and gel electrophoresis are executed d times each. Cleavage is executed
d — 1 times. amplification is executed (log F + log P)d times and we need
one step for setting up the strands for the gates at level 0. Thus, the total
number of steps is (3 + log F + log P)d. On the other hand, the maximum
number of DNA strands that remain in the test tube after processing a single
level is bounded by mFP.

Thus, we have proven the following theorem.

Theorem 1 A semi-unbounded fan-in circuit C of size m, depth d, the
mazimum fan-out F can be simulated by a DNA computer in dlog F + O(d)
steps with space complexity O(mF).

For a natural number &, SACF denotes the collection of problems that are
solvable by a family {Cy},>1 of semi-unbounded fan-in circuits such that
size(C) = O(n®) for some fixed constant a and depth(Cy,) = O(log* n).
SAC without the superscript denotes the union of all SACK k > 0. It
is well-known that the class SAC! coincides with the problems that are
logarithmic space transformable to CFL, the context-free languages [Ven91].
Also, many combinatorial and mathematical problems are known to belong

%@/@% 96
2 YA

&l %

Figure 1: The Depth-2 And-Or Circuit

to SAC. Since the maximum fan-out F is bounded by the size m, and m is
a polynomial in n for SAC circuits, we have the following corollary.

Corollary 2 For every k > 0, SACF can be simulated by a DNA computer
in time O(logF* n) and space polynomial in n.

The above analysis gives us an added bonus. The class NC [Pip79] is
the counterpart of SAC in the bounded fan-in circuit model. There is a vast
literature on NC! classes and numerous problems from the integer arithmetic
to sorting are proven to belong to this class. NC! circuits can be converted
to a tree, by allowing many copies of input gates to exist. For a circuit in
the form of a tree, the maximum fan-out F is 1, and thus, the simulation of
such a circuit does not require the amplification step. This allows us to get
rid of the (log F +log P) factor in the running time and the F factor in the
space complexity.

Corollary 3 Letk > 0 and {Cp}n>1 be an NCF circuit family. For every n,
Cy, can be simulated by a DNA computer in time 3- depth(C,,) and space P -
size(Cy), where only appending, separation by size, detection, and cleavage
are assumed.

3 The Experiment

We have attempted to experimentally simulate a small instance of a
bounded fan-in Boolean circuit given in Figure 1. The four input variables
it = 1,...,4, were encoded as four 21-mer oligonucleotides of unique se-
quences, each of whose 3’ terminus ends in the sequence 5-GT-3'. These are

Tube Number I1 I2 I3 I4

1 - - = - monomer size standard
2 1 1 1 1
3 0O 1 0 1
4 1 0 1 0
5 0O 0 1 1
6 — — — — monomer + dimer size standards
Table 1: The Test Inputs
5 35 3
G7 I C f“f L l
g———i5
E76
5 3’” 5 ?3’
W S
I/ 5
Eis

Figure 2: The Match of the Oligonucleotides

designated I, I1, I3, and Iy, respectively. The two OR gates were encoded as
two 22-mer oligonucleotides each of whose 5" and 3’ ends are 5'-AC- - - GT-3'.
In addition, a phosphate group was attached to each of these two oligonu-
cleotides at their 5 end [SFM89]. These are identified as G5 and G, re-
spectively. The AND gate (designated, G7) was chosen as a 21-mer oligonu-
cleotide of unique sequence whose 5’ end was attached to a phosphate group
with a radioactive phosphorus atom. In addition, we synthesized six 20-mer
oligonucleotides corresponding to the six edges (Ei 5, Eas5, E36, Ese,Es5 7,
and E7). These edges are directional. For example, the 5’ half of edge E 5
is complementary to 10 nucleotides in the 5' half of G5 with the reversed
polarity, and the 3’ half of F 5 is complementary to the 3’ half of I; with
the reversed polarity. This is shown in Figure 2. Thus, the edge oligonu-
cleotide E; 5 can hybridize to both G; and G5, but to no other sequence,

10

65 bases | —
43 bases —p=

22 bases

Figure 3: Test Results

such that a DNA joining enzyme (ligase) [SFM89] can covalently join the 5’
phosphate of G5 to the 3’ hydroxyl group of I;. This will make a 43 base
long dimeric oligonucleotide 5'-I1-G'5-3'. Similarly, Es 5, E36, E46, and E5 7
make the dimeric oligonucleotides 5'-I5-G5-3', 5'-I3-Gg¢-3', 5'-I4-Gg-3', and
5'-I5-G7-3', respectively. Each such dimer will contain in the middle of the
molecule a 4-base sequence 5-GTAC-3. This is the target sequence of a single-
stranded DNA endonuclease Rsal. Finally, the sequence and the polarity of
the edge oligonucleotide E7g was so chosen that it could make possible the
synthesis of the molecule 5'-G7-Gg-3'. If oligonucleotides G5, G, G7, Es 7,
and E7¢ are all present in a test tube, a ligase reaction should produce the
65 nucleotide long trimer 5-G5-G7-Gg-3' which should be radioactive. If
either G5 or G is absent in the tube, the 65 nucleotide long trimer cannot
be formed.

We have begun to test the simulation by actual experiments (for meth-
ods, see Section 5). The preliminary experiments have used four different
input combinations three of which should generate the output 1 and the
other should produce the output 0 (Table 1). Thus, test tube 2 contained
inputs I1, I, I3, and I4; test tube 3 contained only I5 and 1; test tube 4 con-
tained only I; and I3; and test tube 5 contained only I3 and I;. In test tubes
1 and 6, we added DNA size markers for monomer and monomer+dimer,
respectively. To implement the OR gate, we added G5, G, E1 5, Eo 5, E36,
and F4 g, allowed annealing and ligation, and separated the products by size
on a denaturing polyacrylamide gel by electrophoresis [SFM89]. Positions
of the gel corresponding to the dimer size band were cut out and DNA,
if any, was extracted. These solutions were then treated with the enzyme
Rsal to cleave any dimer DNA to the monomer length. To each tube were
then added the oligonucleotides G7, E57, and E7¢. They were allowed to
anneal and ligate. The final products were again separated according to
size by electrophoresis on a denaturing polyacrylamide gel and visualized by
autoradiography on an X-ray film (see Figure 3). Our results indicate that
we detected the presence of the 65 base trimer in all three tubes that should

11

generate 1 (tubes 2—4), and not in tube 5, which should generate output 0.
The dimer bands, expected in all four outputs, were present in all tubes.

Is molecular circuit analysis feasible for a large network on which dig-
ital computes are inefficient? By a proof similar to that of the Gilbert-
Varshamov Theorem (see [vL91]), one can show that there is a set of
1.6 x 10'2 distinct 40 base oligonucleotide sequences such that (i) for any two
sequences A and B, A disagrees with B and its complement at 10 positions
and (ii) no sequence contains the pattern that is cleaved by the restriction
enzyme Rsal. Artifactual annealing between short stretches of homology in
otherwise noncomplementary oligonucleotides maybe avoided by enzymatic
annealing catalyzed by the DNA strand transfer protein RecA [KE94]. So,
we can handle at least one trillion wires by encoding the gates as 40 base
oligonucleotide sequences. On the other hand, one trillion wires are per-
haps beyond the reach of digital computers. Then one might think that
evaluation of such large circuits could be a “killer application” of DNA-
based computation. However, one should note that synthesis of one trillion
linker sequences of DNA has to be done sequentially unless the evaluated
circuit has a highly regular gate-connection pattern so that much of gate-
sequence synthesis process can be done concurrently. Therefore, one trillion
wires are beyond the reach of DNA computer as well. However, we note
that a technique for parallel synthesis of many DNA sequences currently
exists [CYH™96].

Nevertheless, we still argue that our DNA-based evaluation method will
be useful, in particular, when we need to evaluate one circuit on many
distinct input sets. Suppose that we need to evaluate a Boolean circuit C' of
S wires, depth D, with I input gates on T different sets of input bits. If we
are to conduct evaluation one input after another, then the total amount of
time required is

Oo(T(S+1))+0O(TD),

where the first term is for preparation and the second for evaluation. Noting
that the same set of linkers and gate strands are used for all the input sets,
we can spare time by keeping the originals synthesized for the first input set
and by using copies of the originals for the other input sets. Since copying
process can be done level-wise, this modification reduces the total time to

O(T(D +1) + S) + O(TD),

thereby reducing the amortized cost to O(D + S/T). For example, with
D =10% I = 10% S = 108, and T = 10%, the total preparation time is

12

only an order of 10% and the amortized running is an order of 10*. On the
other hand, the amount of time required for sequential digital processing is
TS =10".

In the same situation, we can even run the evaluation of all input sets
concurrently in one test tube. To do this we employ a slightly different
encoding scheme. We insert in the middle of each gate sequence a pattern
that specifies a number J,1 < J < I. This middle pattern is used to
specify which of the input set the strand will be used for. We also make the
linker strands specify their input names J by attaching the strand that is
complementary antiparallel to the first half (the second half) of J at their 5'-
ends (3'-ends). If all the input names are assigned short common patterns
at both ends, then we can generate the necessary strands for concurrent
evaluation by controlling the volume of the strands and then by chemically
connecting the components. Then the preparation cost is O(T + S), and
the total running time becomes O(T + S + D). Again, the amount of time
required for sequential digital processing is still 7S = 10'2.

The step time in DNA computation can be significantly reduced by au-
tomated devices: the separation of oligonucleotides at each level can be ac-
complished by robotically controlled electrophoresis in microcapillaries and
high performance liquid chromatography [WV93] programmed to achieve an
optimum resolution between 20 and 70 nucleotides. The final output can be
detected by fluorescence emission by wave guidance techniques [SHH*95].
Efficiency of the cleavage reaction can be similarly monitored by fluores-
cence measurements and the step levels extended by feedback until a preset
limit of cleavage is attained. When a non-tree circuit is simulated, an am-
plification step needs to be incorporated. This can be conveniently made
by Ligase Chain Reaction (LCR) [AM93] in which the new junctions can
be amplified by annealing and ligation of two half edge molecules on the
complementary dimer. This also can be performed automatically on silicon
microchips [CSM196]. Since LCR does not contain a DNA synthesis step
during amplification, it is inherently less error-prone than amplification by
PCR.

4 Conclusion

We have shown that the DNA computer is a potential tool for imple-
menting standard computation models, in particular, for Boolean circuits.
We have proven that the runtime slowdown is proportional to the logarithm
of the maximum fan-out of the Boolean circuit and the space complexity is

13

L Gates

Y
[Reaction Tube |

T T
Detect Level Multiplex of
inputs
Y
Separate Output

Figure 4: A Diagram for Automated Experiments

proportional to the product of the size and the maximum fan-out. The im-
plication is that DNA computers are capable of simulating circuits with 10
billion gates, which may exceed the maximum number of parallel processing
units in digital computing devices.

5 Methods

Radioactive labeling: 2ug of the oligonucleotide was mixed with 20uCi of
[v32P]ATP (DuPont) in 0.25x concentrated DNA ligase buffer (NewEngland
Biolabs) and one unit of T4 polynucleotide kinase (NewEngland Biolabs)
was added in a total volume of 19 pl. After 15 minutes at 37°C, 4 ul of
5x concentrated DNA ligase buffer was added and incubation was continued
for 30 more minutes. The labeled DNA was stored frozen at —20°C.

Phosphorylation of the 5" end: 2ug of the oligonucleotide was mixed with
1 unit of T4 polynucleotide kinase in 1x concentrated DNA ligase buffer
in a total volume of 20ul, and incubated at 37°C for 45 minutes. The
phosphorylated DNA was stored at —20°C until used.

Ligation: 1 nanomole of each oligonucleotide was mixed together in a
total volume of 6u1; 2l of 5x concentrated DNA ligase buffer was added and
the reaction was started by 2ul of T4 DNA ligase (NewEngland Biolabs).
Ligation was carried out at 23°C for 1 hour.

14

Electrophoresis, detection, recovery and treatment of DNA: The DNA
bands were separated by electrophoresis in 15% urea-polyacrylamide gels
at 50 Volts and approximately 10 mA current in Tris-acetate-EDTA
buffer [SFM89]. At the end of electrophoresis, an X-ray film was placed
on the wet gel in Saran wrap and exposed at the room temperature for 2.5
hours in the dark. The X-ray film was developed, placed under the gel to as-
certain the position of a 43 mer band from a radioactive marker of the same
size electrophoresed in a parallel lane, and acrylamide pieces corresponding
to this size of DNA were cut out with a scalpel from the appropriate lanes.
The gel pieces were macerated, soaked in 150 pl of 0.3 M sodium acetate
and agitated at 37°C for 2 hours to elute the DNA. The gel pieces were dis-
carded, an additional 100 pl of 0.3 M sodium acetate was added, extracted
successively with equal volumed of phenol-chloroform mixture (1:1), and
chloroform; finally the DNA was precipitated with 2.5 volume of ethanol at
—20°C. The dried pellet was resuspended in 8ul of water, and digested for
2 hours at 37°C with the enzyme Rsal (NewEngland Biolabs) in the appro-
priate buffer as recommended by the manufacturer. Following digestion, the
DNA was boiled for 2 minutes to inactivate the enzyme.

Acknowledgments

The authors thank John Reif and anonymous referees for valuable com-
ments.

References

[ABL'94] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Wat-
son. Molecular Biology of the Cell. Garland Publishing Inc., New
York, NY, 3rd edition, 1994.

[Ad194] L. Adleman. Molecular computation of solutions to combinato-
rial problems. Science, 266:1021-1024, 1994.

[AdI96] L. Adleman. On constructing a molecular computer. In R. Lip-
ton and E. Baum, editors, Proceedings of 1st DIMACS Workshop
on DNA Based Computers, pages 1-21. The American Mathe-
matical Society, 1996.

[AKS83] M. Ajtai, J. Komlos, and E. Szemerédi. Sorting in clogn parallel
steps. Combinatorica, 3(1):1-19, 1983.

15

[AMY3]

[BCHS6]

[BDLS96]

[Bea96]

[BL95)

[CSM*96]

[CYH*96]

[KE94]

[KKW96]

[Lip95]

R. D. Abramson and T. W. Myers. Nucleic acid amplification
technologies. Currerent Opinion in Biotechnology, 4:41-47, 1993.

P. Beame, S. Cook, and H. Hoover. Log depth circuits for division
and related problems. SIAM Journal on Computing, 15(4):994—
1003, 1986.

D. Boneh, C. Dunworth, R. Lipton, and J. Sgall. On the compu-
tational power of DNA. Discrete Applied Mathematics, 71:79-94,
1996.

D. Beaver. A universal molecular computer. In R. Lipton and
E. Baum, editors, Proceedings of 1st DIMACS Workshop on
DNA Based Computers, pages 29-36. The American Mathemat-
ical Society, 1996.

D. Boneh and R. Lipton. Making DNA computers error resis-
tant. Research Report CS-TR-491-95, Department of Computer
Science, Princeton University, May 1995.

J. Chen, M. A. Shoffner, K. R. Mitchelson, L. J. Kricka, and
P. Wilding. Analysis of ligase chain reaction products amplified
in a silicon glass chip using capillary electrophoresis. Journal of
Chromatography, Series A, 732:151-158, 1996.

M. Chee, R. Yang, E. Hubbell, A. Berno, X. Huang, D. Stern,
J. Winkler, D. Lockhart, M. Morris, and S. Fodor. Accessing
genetic information with high density DNA arrays. Science,
274:610-614, 1996.

S. C. Kowalczykowski and A. K. Eggleston. Homologous pair-
ing and DNA strand-exchange proteins. Ann. Rev. Biochem.,
63:991-1043, 1994.

R. Karp, C. Kenyon, and O. Waarts. Error-resilient DNA compu-
tation. In Proceedings of Tth ACM-SIAM Symposium on Discrete
Algorithms, pages 458-467. ACM Press/SIAM, 1996.

R. Lipton. DNA solutions of hard computational problems. Sci-
ence, 268:542-545, 1995.

16

[Pip79]

[Rei95]

[SFMB8Y]

[SHH+95]

[SV84]

[Ven91]

[vLI1]
[Win96]

[WV93]

N. Pippenger. On simultaneous resource bound. In Proceedings of
11th Symposium on Theory of Computing, pages 307-311. ACM
Press, 1979.

J. Reif. Parallel molecular computation. In Proceedings of 7th
ACM Symposium on Parallel Algorithms and Architecture, pages
213-223. ACM Press, 1995.

J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning:
a Laboratory Manual. Cold Spring Harbor Press, NY, 2nd edi-
tion, 1989.

D. Simpson, J. Hoijer, W. Hsieh, C. Jou, J. Gordon, T. The-
riault, R. Gamble, and J. Baldeschwieler. Real-time detection
of DNA hybridization and melting on oligonucleotide arrays by
using optical wave guides. Proceedings of the National Academy
of Science, 92:6379-63830, 1995.

L. Stockmeyer and U. Vishkin. Simulaiton of parallel ran-
dom access machines by circuits. SIAM Journal on Computing,
13(2):409-422, 1984.

H. Venkateswaran. Properties that characterize LOGCFL. Jour-
nal of Computer and System Sciences, 43:380-404, 1991.

J. van Lint. Introduction to coding theory. Springer-Verlag, 1991.

E. Winfree. On the computational power of DNA annealing and
ligation. In R. Lipton and E. Baum, editors, Proceedings of 1st
DIMACS Workshop on DNA Based Computers, pages 199-221.
The American Mathematical Society, 1996.

W. J. Warren and G. Vella. Analysis of synthetic oligodeoxyri-
bonucleotides by capillary gel electrophoresis and anion-exchange
HPLC. BioTechniques, 14:598-606, 1993.

17

