
Biophysics
A Computational Approach

Concepts, Models, Methods and Algorithms
Lectures 1 and 2: Methods

Dieter W. Heermann

Heidelberg University

October 18, 2016

1 / 94

Table of Contents

1. Introduction
General Remarks
Force Fields

2. Molecular Dynamics
Basic Algorithm
Boundary Conditions
Force Calculation
Verlet Algorithm
Example
Constant Temperature Molecular
Dynamics
Constant Pressure Molecular
Dynamics

Event-Driven Molecular Dynamics
3. Langevin Dynamics
4. Monte Carlo Method

Random Numbers
Accept/Reject Method
Gibbs-Sampler
Markov Chain Monte Carlo
Metropolis-Hastings Monte Carlo
Error Analysis
Hybrid (Hamiltonian) Monte Carlo
Rejection-Free Monte Carlo

5. Excercises
6. Bibliography
7. Index

2 / 94

Introduction I

In these set of lectures you will find much more material than can be realistically
taught in a course. Hence, each lecture will focus on particular aspects. The additional
material may serve to further the understanding. We will cover a lot of ground starting
off with basic computational methods. Clearly we will not be able to cover them all.
Rather we focus on basic methods. To start off here is a very condensed account of
the history of the development of computational methods that we will encounter:

1953 Monte Carlo method applied to hard spheres [1]

1956 Molecular dynamics of hard spheres [2]

1964 Molecular dynamics of liquid argon [3]

1971 Molecular dynamics of liquid water [4]

1976 Simulation of protein dynamics [5]

1977 Non-Boltzmann sampling [6]

1992 Mulit-Canonical Monte Carlo [7]

1999 Generalized and extended ensemble methods [8]

As always, some assumptions need to be made. Here it is assumed that there is

a basic knowledge of statistical physics

and some programming experience

to understand the methods and algorithms.
General literature for the course can for example be found in [9–12].

3 / 94

General Remarks I

Shown below are 256 Lennard-Jones particles using the parameters for argon at the
density of 0.636 and reference temperature T = 2.53.

crystal structure
liquid structure Overlay of the liquid and

crystal state

Note that the radius with which the particles are depicted does not reflect the size of
the particle. The image below is produced using the radius where the Lennard-Jones
potential passes through zero.

4 / 94

General Remarks II

Figure: Example 1: Lennard-Jones liquid where is particles is depicted with the a radius where
the Lennard-Jones potential goes to zero.

5 / 94

General Remarks III

Figure: Example 2: Linear polymer

A molecular model requires typically

definition of the degrees of freedom

force fields

boundary conditions

and a method to generate configuration or conformations as in the above two
examples.

6 / 94

Force Fields I

A central part of molecular dynamics, Monte Carlo, etc. is the computation of the
forces that are exerted on a particle or unit. One way of categorizing these is to
partition them in pair and many-body interaction.

Bonded: These describes the covalent bonding between two atoms as: bond
stretching and bending. Beyond the pair-potential in this class we also find the
torsional potential.

Non-Bonded: Here we find van-der Waals, electrostatic, etc.

Here we are concerned with very basic potentials. More potentials will be discussed in
the more dedicated lectures and sections. For now we consider:

Excluded volume: Hard Sphere

Harmonic

Lennard-Jones

Electrostatic long range 1/r

7 / 94

Force Fields: Hard Sphere Potential

UHC(r) =

{
∞ r ≤ σ
0 r > σ

(1)

��

����

����

����

����

��

�� ���� �� ���� ��

�
��
�

�

�������������������������������

8 / 94

Force Fields: Harmonic Potential

UH(r) =
1
2
kr2 r ∈ [0,∞] (2)

-1

-0.5

 0

 0.5

 1

 0 0.5 1 1.5 2 2.5 3
-1

-0.5

 0

 0.5

 1

U
(r

)

F
(r

)

r

Harmonic Potential
Harmonic Force

9 / 94

Force Fields: Lennard-Jones Potential

ULJ(r) = 4ε
((σ

r

)12
−
(σ
r

)6
)

r ∈ [0,∞] (3)

����

��

����

��

����

��

�� ���� �� ���� �� ���� ��

�
��
�

�

�����������������������

10 / 94

Force Fields: Coulomb Potential

UC(r) =
q1q2

4πε0

1
r

r ∈ [0,∞] (4)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

U
(r

)

F
(r

)

r

Coulomb Potential
Coulomb Force

11 / 94

Force Fields: Empirical Potential I

Empirical potentials provide a way to specify for example the interactions in proteins.
Specifically for proteins, the base for deriving potentials are protein databases. On the
one hand these provide indeed through NMR or other experimental methods data on
interatomic relations. Many structures are deposited daily. On the other hand, only
those that have more or less fixed structure enter the data base. Proteins like the
intrinsically disordered proteins (IDP’s) do not, thus biasing the results. Hence implicit
is the assumption that the set we are looking at represents the full spectrum of
energies.
We will see below, that most of the time pair potentials are derived. This certainly is
an assumption that may not apply. From solid state theory we know that certain
crystal structures can not be obtained from pair potentials and require many body
potentials.
Assume two atoms or particles A and B separated by a distance r . Then the
probability for finding them at distance r is given by

PAB(r) =
1
Z
e−βUAB (r) . (5)

Given a set of structures in a database like for example the protein database, a
histogram of the distances that one finds in the database between A and B can be
used to get an estimate of PAB . Taking the logarithm of Eq 5 we obtain

lnPAB = −UAB(r)− lnZ . (6)

12 / 94

Force Fields: Empirical Potential II

Since the constant lnZ is irrelevant we find the specific interaction potential. One can
normalize this with the probability Pa for any pair

UAB(r) = −kT lnPAB/ lnPa(r) . (7)

Clearly we need to ask, whether in the calculation of UAB we include every occurrence
of pairs AB or whether specific relations along the backbone of the protein need to be
considered.
Also, we need to discretize the distances to ensure a sufficient statistics.

13 / 94

Force Fields: Empirical Potential III

Figure: Empirical potential taken from Structure-derived potentials and protein simulations by
Jernigan and Bahar [13]

14 / 94

Force Fields: Empirical Potential IV

Example
The H2AX protein (shown in Figure 4, Histone H2AX - P27661 (H2AX_MOUSE))
consists of 143 residues. It is a phosphorylated variant of histone H2A and associated
with DNA damage. In this example the residues are mapped to a lattice model. To
nevertheless capture specificity of each residue a residue-residue interaction and
excluded volume constraints are implemented. Each residue interacts with the
neighboring residues within a range of interaction using a generalized Lennard-Jones
potential

U(r) = |εij |
(
σ

rij

)12
+ εij

(
σ

rij

)6
for rij ≤ rc (8)

where the εij ’s are parameterizations for Eq. 7 using X-ray crystallographic data [14]
on a large number of protein structures from the protein data bank.

15 / 94

Force Fields: Empirical Potential V

Figure: The left panel shows the ribbon images of H2AX. The right panel shows the contact
probability between the residues at a specific temperature. Right image taken from Fritsche et.
al. [15]

16 / 94

Force Fields: Non-Bonded Potential

Double sum

We will later discuss ways to speed up the calculation

Example: Lennard-Jones (see Eq. 3)

1 /**
* Force calculation

3 */
void forceCalculation(float x[], float y[], float z[],

5 float fx[],float fy[],float fz[],
float rcoffs ,float *potential ,

7 float *virial , float side) {
int i,j;

9 float xi ,yi,zi;
float rd , rd2 , rd3 , rd4 , rd6 , rd7;

11 float r148;
float kx ,ky,kz;

17 / 94

Force Fields: Non-Bonded Potential

for (i = 0; i < 1; i++) {
2 for (j = i+1; j < 3; j++) {

xi = x[i] - x[j];
4 yi = y[i] - y[j];

zi = z[i] - z[j];
6 minimumImage (&xi ,&yi ,&zi,side);

rd = xi*xi + yi*yi + zi*zi;
8 if (rd < rcoffs) {

rd2 = rd * rd;
10 rd3 = rd * rd2;

rd4 = rd2 * rd2;
12 rd6 = rd2 * rd4;

rd7 = rd3 * rd4;
14 *potential += ((1.0 /rd6) - (1.0 / rd3));

r148 = (1.0 / rd7) - (1.0 / rd4) * (float).5;
16 *virial -= rd * r148;

18 kx = x[i] * r148;
fx[i] += kx;

20 fx[j] -= kx;

22 ky = y[i] * r148;
fy[i] += ky;

24 fy[j] -= ky;

26 kz = z[i] * r148;
fz[i] += kz;

28 fz[j] -= kz;
}

30 }
}

32 }
18 / 94

Molecular Dynamics

The starting point for the Molecular Dynamics (MD) simulation [2, 3, 16–20] is thus a
well-defined force field. Using Hamiltonian, Lagrangian or Newton’s equations of
motion these are approximated by suitable schemes Ψ such that they can be solved
numerically.

q

p Phase Space

Trajectory

19 / 94

Molecular Dynamics

Let us be more general for the moment and use generalized coordinates p and q with
the Hamiltonian instead of the usual coordinates

H(q, p) =
1
2
pTM−1p + V (q) . (9)

From this Hamiltonian we get the equations of motion

d

dt
q = −

∂

∂q
H (10)

d

dt
p =

∂

∂p
H . (11)

An important consideration for any numerical integration scheme is that we want to
conserve as many quantities during a numerical evaluation as possible that are
conserved due to symmetries etc. This leads us to the concept of symplectic methods.
Symplectic methods preserve certain abstract invariants of Hamiltonian
systems [21–23] and are stable for linear systems for sufficiently small values of the
step size.

20 / 94

Molecular Dynamics

We denote the trajectory that we want to generate by Γ

Γ(t) =
(q
p

)
. (12)

Then this trajectory obeys the equation of motion

d

dt
Γ = J∇H(Γ) (13)

J =

(
0 I
−I 0

)
, (14)

where I denotes the unit matrix.
We compute an observable A along the trajectories and hence average along the states
we find along the path

〈A〉 =
1

nobs

nobs∑
ν=1

A(Γν(t)) . (15)

21 / 94

Molecular Dynamics

Here nobs is the number observations we took, i.e., how many iterations we took in
the numerical integration of the equations of motion.
Let ρ0(Γ) denote the probability density at time t = 0: Γ(0) = ρ0(Γ) and let ρ(Γ, t)
denote the probability density for Γ(t). Then we have the Liouville theorem for the
trajectories.

ρ(Γ, 0) = ρ0 (16)

ρt +∇ · (ρJ∇H) = 0 (17)

This states that the flow in phase space is that of an incompressible fluid.
If ρt = 0, then

∇H · J · ∇ρ = 0 (18)

and with this

ρ(Γ) =
e−H(Γ)/kBT∫
e−H(Γ)/kBTdΓ

. (19)

22 / 94

Molecular Dynamics

Now let Ψ be a numerical integrator, i.e. a discretization of the equations of motion

Γn+1 = Ψ(Γn) , (20)

then the phase space volume needs to be conserved

det ∂ΓΨ(Γ) = 1 . (21)

The integrator is sympletic, if

(∂ΓΨ(Γ)T J(∂ΓΨ(Γ) = J (22)

i.e. phase space volume and the energy is conserved.

23 / 94

Molecular Dynamics

The most straightforward discretization of the equations of motion that involve
differentials comes from the Taylor expansion. The idea is to base the algorithm on a
discrete version of the differential operator. With suitable assumptions we can expand
the variable r in a Taylor series

r(t + ∆t) = r(t) +

n−1∑
i=1

∆i t

i!
r (i)(t) + Rn . (23)

where Rn gives the error involved in the approximation.
Using the forward t + ∆t and the backward difference t −∆t

r(t + ∆t) = r(t) + v(t)∆t +
F (t)

2m
∆2t +

d3r

dt3
∆3t

3!
+ R4 (24)

r(t −∆t) = r(t)− v(t)∆t +
F (t)

2m
∆2t −

d3r

dt3
∆3t

3!
+ R4 (25)

(26)

If we add the two equations, we obtain

r(t + ∆t) = 2r(t)− r(t −∆t) +
F (t)

2m
∆2t + R∗4 (27)

24 / 94

Molecular Dynamics

If we subtract the two equations we obtain

r(t + ∆t) + r(t −∆t) = 2v(t)∆t + R∗3 (28)

and hence an estimator for the velocity

v(t) =
r(t + ∆t) + r(t −∆t)

2∆t
+ R∗2 . (29)

The estimator for the position and the velocity together comprise what is known as
the Verlet algorithm [20]. The Verlet algorithm is a second-order method that is
indeed symplectic.
So, much hinges on the simulation step-size, since this determines the time-scales,
that we can cover. As we have seen above the choice of step size is dominated by
stability demands and not by accuracy demands.

25 / 94

Molecular Dynamics: Basic Algorithm

Algorithm 1 Molecular Dynamics Algorithm

1: n = 0
2: Specify positions r−1

i and r0i
3: Set ∆t
4: while n 6= maxSteps do
5: Compute the forces at time step n: F n

i

6: Compute the positions at time step n + 1 rn+1
i

7: Compute the velocities at time step n: vn
i

8: n = n + 1
9: end while

Note that in this formulation of the molecular dynamics algorithm we need two
starting positions, rather than position and velocity!

26 / 94

Molecular Dynamics: Boundary Conditions

The computational volume is given by

Ω = (a1, b1)× . . .× (ad , bd) ⊂ Rd (30)

where here for simplicity we assume

bi − ai = L, ai , bi ∈ R (31)

Of course, more complicated situations may be considered.

L

L

27 / 94

Molecular Dynamics: Boundary Conditions

macroscopic properties

avoidance of boundaries such as walls

linear momentum is conserved under periodic boundary conditions

problem [24]

28 / 94

Molecular Dynamics: Boundary Conditions

F : Ω→ R

∀r = (x1, . . . , xd) ∈ Ω, i = 1, . . . , d :

F (x1, . . . , xi−1, ai , xi+1, . . . , xd) = F (x1, . . . , xi−1, bi , xi+1, . . . , xd) (32)

Image

Image

Image

Image

Image

Image

Image

Image

29 / 94

Molecular Dynamics: Boundary Conditions

/**
2 * Periodic boundary conditions

*/
4 void applyPeriodicBoundary(float x[], float y[], float z[],float side) {

for (int n = 0; n < N; n++) {
6 if (x[n] < 0) x[n] += side;

if (x[n] > side) x[n] -= side;
8 if (y[n] < 0) y[n] += side;

if (y[n] > side) y[n] -= side;
10 if (z[n] < 0) z[n] += side;

if (z[n] > side) z[n] -= side;
12 }

}

30 / 94

Molecular Dynamics: Boundary Condition

Algorithm 2 Minimum Image Criterion (here for d = 1)

1: dx = xj − xi
2: if dx > L * 0.5) then
3: dx = dx - L
4: end if
5: if dx <= -L * 0.5 then
6: dx = dx + L
7: end if

Image

Image

Image

Image

Image

Image

Image

Image

Minimum Image

31 / 94

Molecular Dynamics: Boundary Condition

1 /**
* Minimum image convention

3 */
void minimumImage(float* xi, float* yi, float* zi,float side){

5 float sideh;
sideh = side * 0.5;

7 if (*xi < -sideh) { *xi += side;}
if (*xi > sideh) { *xi -= side;}

9 if (*yi < -sideh) { *yi += side;}
if (*yi > sideh) { *yi -= side;}

11 if (*zi < -sideh) { *zi += side;}
if (*zi > sideh) { *zi -= side;}

13 }

32 / 94

Molecular Dynamics: Force Calculation I

Verlet table

33 / 94

Molecular Dynamics: Verlet Algorithm

The Verlet algorithm can be reformulated in such a way as to give a numerically more
stable method [25, 26]. Define

zni =
rn+1
i − rni

h
(33)

The equations

rni = rn−1
i + hzn−1

i

zni = zn−1
i + hF n

i /m (34)

are called the summed form. A further reformulation yields the velocity form of the
Verlet algorithm.

34 / 94

Molecular Dynamics

Algorithm 3 Molecular Dynamics Algorithm: NVE Velocity Form

1: n = 1
2: Set ∆t
3: Specify the initial positions r0i , r

1
i

4: Specify the initial velocities v0
i , v

1
i

5: Compute the forces F 1
i

6: while n 6= maxSteps do
7: rn+1

i = 2rni − rn−1
i + F n

i h
2/m

8: Compute F n+1
i

9: vn+1
i = vn

i + h(F n+1
i + F n

i)/m
10: n = n + 1
11: end while

35 / 94

Molecular Dynamics: Example I

Excluded volume interactions are simulated by the WCA (Weeks-Chandler-Andersen)
potential [27], which was designed to model excluded volume interactions by a
short-range repulsive force. The WCA potential is basically a truncated and shifted
Lennard-Jones potential with the following functional form,

UWCA(r) =

{
4ε
((

σ
r

)12 −
(
σ
r

)6
+ cshift

)
r < rcut

0 r ≥ rcut
(35)

Here rcut = 21/6 and cshift = 1
4 are chosen such that the minimum of the potential is

UWCA(rmin) = 0, the attractive part of the Lennard-Jones interaction being cut off.
The WCA potential has two parameters ε and σ. σ defines the radius of the
monomers’ hard core. ε controls the energy penalty of another monomer penetrating
this hard core.

36 / 94

Molecular Dynamics: Example II

-1.5x10-5

-1x10-5

-5x10-6

 0

 5x10-6

 1x10-5

 0 0.5 1 1.5 2

WCA
LJ

Figure: Weeks-Chandler-Andersen potential as well as the Lennard-Jones potential

37 / 94

Molecular Dynamics: Constant Temperature I

One way of achieving energy fluctuations for a constant temperature is to supplement
the equations of motion with an equation of constraint. Alternatively one can add to
the forces in the equations of motion a force of constraint (damped-force
method) [28–33]. It can be shown [34] that the damped-force method is a special case
of the constraint method. Another possibility is that of immersing the system in a
heat bath by introducing a stochastic force simulating collisions with virtual particles.
Later we take up the idea of stochastic supplements to the equations of motion. A
natural choice for the constraint is to fix the kinetic energy to a given value during the
course of a simulation. Such a constraint may be the non-holonomic constraint [34]

Λ =
1
2

∑
i

mv2
i = const (36)

(isokinetic MD) or one may take the total kinetic energy proportional to time with a
vanishing proportionality constant if the system has reached a constant temperature
(Gaussian isokinetic MD) [35]

1
2

∑
i

mv2
i = αt (37)

β =

[
(3N − 4)kBTref/

∑
i

mv2
i

]1/2

(38)

38 / 94

Molecular Dynamics: Constant Temperature II

so that after the scaling step we have

1
2

∑
i

mv2
i =

1
2

(3N − 4)kBTref . (39)

39 / 94

Molecular Dynamics: Constant Temperature

Algorithm 4 Molecular Dynamics Algorithm: NVT

1: n = 1
2: Set ∆t
3: Specify the initial positions r1i
4: Specify the initial velocities v1

i
5: Compute the forces F 1

i
6: while n 6= maxSteps do
7: rn+1

i = rni + hvn
i + h2F n

i /2m
8: vn+1

i = vn
i + h(F n+1

i + F n
i)/2m

9: Compute
∑

i (v
n+1
i)2 and the scaling factor β.

10: Scale all velocities vn+1
i → vn+1

i β
11: n = n + 1
12: end while

40 / 94

Molecular Dynamics: Constant Pressure I

For the isolated N-particle system the energy E and the volume V are the
independent variables. If we fix the pressure, then the volume, being the variable
conjugate to the pressure, must be allowed to fluctuate. For a constant particle
number N and constant pressure P, the enthalpy H is conserved

H = E + PV (40)

To make the volume fluctuations possible we introduce the volume V as a new
dynamical variable. As such it is also assigned a mass M. To develop equations of
motion for the particles and the volume we further take PV as the potential energy
corresponding to the new dynamic variable [36–38]. The Lagrangian now looks like

L(r , ṙ ,V , V̇) =
1
2

∑
i

mṙ2i − U(r) +
1
2
MV̇ + PEV (41)

Of course, the variables r and V are not coupled. To proceed we appeal to intuition.
If the system is subjected to pressure, the distances between the particles will change.
Conversely, if the distances change, the pressure changes. The crucial step is the
replacement of the coordinates ri of the particles by the scaled coordinates ρi i.e.,

ρi =
ri

V 1/3 =
ri

L
(42)

Now all components of the position vectors of the particles are dimensionless numbers
within the unit interval [0, 1]. With the transformation, the integrals of ri over the

41 / 94

Molecular Dynamics: Constant Pressure II

fluctuating volume V become integrals of ρi over the unit cube. Having written down
(42) we have made the implicit assumption that each spatial point responds in the
same way. Due to this, there is no consistent physical interpretation of the approach.
The equation (42) couples the dynamical variables r to the volume. Taking the first
time derivative we obtain

ṙi = Lρ̇i + ρL̇ (43)

In equilibrium, the changes in the volume can be regarded as slow. Therefore we may
assume

pi

m
= Lρ̇i (44)

as the momentum conjugate to ρi and the Lagrangian becomes

L(ρ, ρ̇,V , V̇) =
1
2
L2
∑
i

mρ̇2
i − U(Lρ) +

1
2
MV̇ 2 − PEV (45)

Recall that we anticipate possible effects on the intrinsic dynamics when we modify
the equations. However, the static properties should not be affected. Concerning this
point, note that the potential energy does not involve the new coordinates ρ but the
true r . In a somewhat loose way the Hamiltonian of the system is formulated
as [38, 39]

42 / 94

Molecular Dynamics: Constant Pressure III

H =
1
2
L2
∑
i

mρ̇2
i + U(Lρ) +

1
2
MV̇ 2 + PEV (46)

Here M is still a free parameter, about which we will have more to say later. Having
set up the Hamiltonian the next task is to derive the equations of motion for the
particles and the volume. These equations will now be coupled. In the Newtonian
formulation they are

d2ρ̇i

dt2
=

Fi

mL
−

2
3
ρ̇i

(
V̇

V

)
,

d2V

dt2
=

P − PE

M
(47)

with the pressure P computed from the virial

P =
1
3L

∑
i

mρ̇2
i +

∑
i<j

rijFij

 (48)

43 / 94

Molecular Dynamics: Constant Pressure IV

Algorithm 5 Molecular Dynamics Algorithm: NVT

1: n = 1
2: Set ∆t
3: Specify the initial positions r1i
4: Specify the initial velocities v1

i
5: Specify an initial volume V 0 consistent with the required density
6: Specify an initial velocity for the volume
7: Compute the forces F 1

i
8: while n 6= maxSteps do
9: Compute ρn+1 and V n+1

10: rn+1
i = rni + hvn

i + h2F n
i /2m

11: vn+1
i = vn

i + h(F n+1
i + F n

i)/2m
12: Compute the pressure Pn+1

13: n = n + 1
14: end while

44 / 94

Molecular Dynamics

Robustness

error (propagation)

implementation algorithms

force calculation

parallelization

conservation of quantities (linear and angular momentum, energy,...)

ensemble

Alder Wainright Event-driven vs time-driven

45 / 94

Molecular Dynamics: Event-Driven I

Event

46 / 94

Langevin Dynamics

Another approach to understand how structure arises is to model part of the system
chemically as realistic as possible and take the interaction of atoms with the
environment into account only through their stochastic influence. For example, the
water molecules and all other possible solvent molecules are not explicitly taken into
account.

Figure: H2AX protein with solvants

47 / 94

Langevin Dynamics I

Thus we start off with a Langevin equation [40]

Mr̈ + ηṙ +∇V = ξ(t) , (49)

where M is the mass matrix, η the damping matrix and ξ a normalized white noise
resulting from a Wiener process.
Because of the independence of the coordinates, the Langevin equation (49) only
depends on the covariance matrix of the noise ξ(t) = DẆ (t) (here D is the diffusion
matrix and W a Wiener process)

DDT = 〈ξξTdt〉 . (50)

The fluctuation-dissipation theorem relates the diffusion matrix to the damping matrix
and the temperature

DDT = 2kBTη . (51)

Because of the lack of knowledge of the detailed damping a further reduction in
complexity is usual taken by setting the damping matrix proportional to the mass
matrix

η = γM (52)

with a damping constant γ. We then get

48 / 94

Langevin Dynamics II

D = (2kBTγM)1/2 . (53)

Let ∆E be the energy barrier which the molecule has to take to get to a new state.
Then the activation energy can be related to the mean frequency of transition f by an
Arrhenius law, i.e., the rate increases exponentially with the absolute temperature

f =
kBT

h
exp

(
−

∆E

kBT

)
(54)

where h is the Plank constant.
We shall now assume that we are at low temperatures, where the motions of the
involved atoms are small. The protein is further assumed in a local minimum xmin and
we are interested in the high frequency modes. The highest frequencies are of the
order of 1014 sec (roughly the C-H bond vibrations).
For simplicity we shall also assume that the eigenmodes are non-degenerate. Then we
can expand the potential up to second order

V (r) ≈ V (rmin) +
1
2

(r − rmin)T V̄ (r − rmin) (55)

where V̄ = ∇2V (rmin). Ignoring in the limit of low temperature and high frequency
the damping and the random force term we obtain

49 / 94

Langevin Dynamics III

Mr̈ + V̄ (r − rmin) = 0 (56)

with the general solution

r = rmin +
∑
l

ul exp(iωl t) (57)

Here ωl are the frequencies and ul are the normal modes.

50 / 94

Monte Carlo Method

What are Monte Carlo Methods?

In the widest sense of the term, Monte Carlo (MC) simulations mean any
simulation (not even necessarily a computer simulation) that utilizes random
numbers in the simulation algorithm.

Monte Carlo simulations are statistical and non-deterministic. Hence each
simulation will give a different result, but the results will be related via some
statistical error.

The Monte Carlo algorithm was named the top algorithm of the 20th century by
mathematicians and physicists.

Why do we need this?

Multidimensional integrals
Systems with a large number of degrees of freedom

Many atoms in a gas, liquid, solid
Many electrons in an atom
Gene expression
Networks
...

51 / 94

Monte Carlo Method: Typical Parts I

Typical Parts of a Monte Carlo Method

Probability Distribution Functions

Random Number Generator

Sampling Rule

Evaluating

Error Estimation

Bayes Theorem

Let A and B be events

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ā)P(Ā)
(58)

=
P(B|A)P(A)

P(B)
(59)

52 / 94

Random Numbers I

Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.
John Von Neumann, 1951

Intuitively, we can list a number of criteria that a sequence of numbers must fulfill to
pass as a random number sequence:

unpredictability,

independence,

without pattern.

These criteria appear to be the minimum request for an algorithm to produce random
numbers. More precisely we can formulate:

uniform distribution,

uncorrelated,

passes every test of randomness,

large period before the sequence repeats (see later),

sequence repeatable and possibility to vary starting values,

fast algorithm.

53 / 94

Random Numbers II

The most common generators use very basic operations and apply them repeatedly on
the numbers generated in previous steps. We formulate this as a recursion relation

xi+1 = G(xi), x0 = initial value , (60)

where we have made explicit only the dependence on the immediate predecessor. The
most important representatives of this class of generators are the

linear congruential,

lagged Fibonacci,

shift-register or a

combination of linear congruential.

54 / 94

Random Numbers III

Linear Congruential Generators
A very simple generator is constructed using the modulo function.

G(x) = (xa + b) mod M (61)

This function produces a dilatation, translation and a folding back into the interval.
Random number generators based on this function are called linear congruential
generators or LCG(a,b,M) for short. If we assume integers as the set on which the
modulo function is defined, then for example, the range of integer numbers for a
32-bit architecture is at most M = 231 − 1. Here we assume that one bit is taken for
the sign of the number. Then the numbers range at most from 0 to M − 1. Of course,
we can map these onto the real interval between 0 and 1, recognizing that this is an
approximation to the real-valued random numbers.
Inverse Congruential Generators
A very simple generator is constructed using the modulo function.

xn+1 = (x−1
n a + b) mod M , (62)

where x−1
n is the multiplicative inverse of xn in the integers modm with 0−1 defined

as 0.

The choice of the parameters a, b and M determine the statistical properties and
how many different numbers we can expect before the sequence repeats itself.

55 / 94

Random Numbers IV

The period can be shown to be maximal, if M is chosen to be a prime number.
Then the whole range of numbers occurs.

Here we only consider modulo generators with b = 0.

Such generators are called multiplicative and the short form MLCG(a,M) is used
for such generators.

These are the most commonly used, since one can show that additive generators,
i.e. generators with b in general non zero have undesirable statistical properties.

The choices for the parameter a are manifold. For example a = 16807,
630360016 or 397204094 are possible choices with M = 231 − 1.

56 / 94

Random Numbers V
Page 1 of 1MOD.C

Printed For: Heermann

/*-- */
/* Modulo Generator */
/*-- */
int ModGenerator(modul,multi,inc,seed,max_sweeps,x)
 int modul;
 int multi;
 int inc;
 int seed;
 int max_sweeps;
 float *x;
{
 /*-- */
 /* Declarations */
 /*-- */
 int i;
 double r;
 double factor, increment, modulus;
 /*-- */
 /* End of declares */
 /*-- */

 r = (double) seed;
 factor = (double) multi;
 increment = (double) inc;
 modulus = (double) modul;

 for(i=0; i< max_sweeps; i++) {
 r=fmod(r*factor + increment,modulus);
 x[i] = (float) r / modulus;
 }
 return 0;
}

Figure: C source for a modulo random number generator

57 / 94

Random Numbers VI Page 1 of 1ranf.c

#include <stdlib.h>
int iseed, randInt;
float randFloat;

srand(iseed);
randInt = rand();
randFloat = (float) randInt / (float) RAND MAX;

Figure: C source for the implicit modulo random number generator

Add-with-Carry/Subtract-with-Carry Generators

Add-with-carry and subtract-with-carry generators rely on two numbers, the carry
c and the modular base M.

Add-with-carry generator;

xn+1 = (xn−s + xn−r + c) mod M (63)

Subtract-with-carry

xn+1 = (xn−s − xn−r − c) mod M (64)

Problems:
Require an initial seed of a sufficiently long sequence.
Pairs (or triplets) of terms fall on planes (see modulo generator).

58 / 94

Random Numbers VII

Fibonacci Generators
The lagged Fibonacci generator, symbolically denoted by LF(p,q,⊗) with p > q, is
based on a Fibonacci sequence of numbers with respect to an operation which we
have given the generic symbol ⊗.
Let S be the model set for the operation ⊗, for example the positive real numbers, the
positive integers, or the set S = {0, 1}. The binary operation ⊗ computes a new
number from previously generated numbers with a lag p

xn = xn−p ⊗ xn−q , p > q . (65)

To start the generator we need p numbers. These can be generated using for example
a modulo generator. The advantage of the lagged Fibonacci generator, apart from
removing some of the deficiencies that are build into the modulo type generators, is
that one can operate on the level of numbers or on the level of bits.

Page 1 of 1FIBO.C
Printed For: Heermann

 for(i=0; i< max_sweeps; i++) {
 mf[p] = mf[p] + mf[q];
 if (mf[p] > 1) mf[p] -= 1;
 x[i] = mf[p];
 if (++p == lagP-1) p = 0;
 if (++q == lagP-1) q = 0;
 }

Figure: Fibonicci

59 / 94

Random Numbers VIII

In the following I have listed some lagged Fibonacci generators:

Recursion Relation Period
xi = xi−17 − xi−5 mod (2n) (217 − 1)2n−1

xi = xi−17 + xi−5 mod 2n (217 − 1)2n−1

xi = xi−31 − xi−13 mod 2n (231 − 1)2n−1

xi = xi−55 − xi−24 224(297 − 1) with 24 Bit Mantissa

For example, we can construct a generalized shift-register generator GFSR(p,q,⊗),
where the operation is interpreted as the exclusive or, which acts on every of the 32
bits in a computer word. This generator is also known under the name of R250.
(Follow this link to access the code for the R250.c.)

60 / 94

http://wwwcp.tphys.uni-heidelberg.de/download/Vorlesung/R250.C

Random Numbers IX

Page 1 of 2R250.C
Printed For: Heermann

include <math.h>
define RAND_MAX 2147483647

/*==*/
/* */
/* Random Number Generator: R 2 5 0 */
/* */
/* program version 1.0 for C */
/* Dieter W. Heermann */
/* may 1990 */
/*==*/

int init_r250(seed, m_f_ptr)
 int seed;
 int *m_f_ptr;
 {

 int i,tmp, dummy, one ;
 int *start;

 start = m_f_ptr;
 srand(seed);
 one = 1;

 /* warm up the usual random number generator */
 for (i=0; i< 100; i++)
 {dummy = rand();
 }

 /* now draw the 250 (251)initial bit sequences */
 for (i=0 ; i<251; i++)
 {*m_f_ptr++ = rand();
 }

 /* now orthogonalize as best as we can */
 m_f_ptr = start;
 for (i=0; i < 30; i++)
 { tmp = *m_f_ptr;

 *m_f_ptr = tmp | one;

 one = one << 1;

 m_f_ptr++;
 }

 return 0;
 }

int r250 (n, x_ptr, m_f_ptr, save)
 int n;
 float *x_ptr;
 int *m_f_ptr;
 int save;
 {

 int ind ;
 int j, min,k,ll;
 float *ran_ptr;

 ind = save;
 ll = n + 250;
 ran_ptr = x_ptr;
 j = 1;

Figure: The shift bit register generator R250

Non Uniform Distributions

Let us turn now to the generation of non-uniform distributions. First we look at
the normal or Gaussian distribution.

61 / 94

Random Numbers X

Typically algorithms generating non-uniform variates do so by converting uniform
variates.

In its most straightforward form a normal deviate x with mean < x > and
standard deviation σ is produced as follows:

Let n be an integer, determined by the needed accuracy. Then
sum n uniform random numbers ri from the interval (−1, 1):

sn =
n∑

i=1
ri

and let x =< x > +σsn
√

3.0/n .

62 / 94

Random Numbers XI

Let G(x) be a function on the interval [a, b] with 0 < G(x) < 1 and f (x) the
probability distribution f (x) = a exp [−G(x)], where a is a constant.

Algorithm 6 Algorithm

1: Generate r from a uniform distribution on (0, 1)
2: Set x = a + (b − a)r
3: Calculate t = G(x)
4: Generate r1, r2, ..., rk from a uniform distribution on (0, 1) (k is determined from

the condition t > r1 > r2 > ... > rk−1 < rk)
5: if t < r1 then
6: k = 1
7: end if
8: if k is even then
9: reject x and go to 1

10: else
11: x is a sample
12: end if

An interesting method for generating normal variates is the polar method. It has the
advantage that two independent, normally distributed variates are produced with
practically no additional cost in computer time.

63 / 94

Random Numbers XII

Algorithm 7 Polar Algorithm

1: Generate two independent random variables, U1,U2 from the interval (0, 1).
2: Set V1 = 2U1 − 1, V2 = 2U2 − 1
3: Compute| S = V 2

1 + V 2
2

4: if S ≥ 1 then
5: return to step 1
6: else
7: x1 = V1

√
−2 ln S/S

8: x2 = V2
√
−2 ln S/S

9: end if

64 / 94

Accept/Reject Method I

Another idea of converting one distribution into another is to accept or reject
drawn number for an initial distribution such that the accepted numbers have the
desired distribution.

Assume that we are given a uniform random number generator U ∼ (0, 1) and
X ∼ g .

We want to generate Y ∼ f .

Assume that there exists a constant c such that f (x) < cg(x) for all x .

Algorithm 8 Accept/Reject Algorithm

1: Generate X ∼ g
2: Generate U ∼ (0, 1)
3: if U ≤ f (X)/cg(X) then
4: Y = X
5: else
6: Goto 1
7: end if

65 / 94

Accept/Reject Method II

To proof that this is correct we show that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y) .

Note that

P(X < y |U ≤ f (X)/cg(X)) = P(Y ≤ y)

P(U ≤ f (X)/cg(X))
=

∫ y
−∞

∫ f (x)/cg(x)
0 g(x)dudx∫∞

−∞
∫ f (x)/cg(x)
0 g(x)dudx

which simplifies to ∫ y

−∞
f (x)dx .

66 / 94

Gibbs-Sampler I

Assume x = (x1, x2) with target π(x)

Gibbs-Sampler Algorithm:

Algorithm 9 Gibbs Sampler Algorithm

1: initialize x0 = (x1
0 , x

2
0)

2: while i ≤ mcsmax do
3: sample x1

i ∼ π(x1|x2
i−1)

4: sample x2
i ∼ π(x2|x1

i)
5: end while

{x1, x2} is a Markov chain

67 / 94

Gibbs-Sampler I

Generalization: x = (x1, ..., xp), p > 2

Algorithm 10 Generalized Gibbs Sampler Algorithm

1: initialize x0 = (x1, ..., xp)
2: while i ≤ mcsmax do
3: for k = 1→ p do
4: sample xki ∼ π(xk |x−k

i)
5: end for
6: end while

where x−k
i = (x1

i , ..., x
k−1
i , xk+1

i−1 , ..., x
p
i−1)

68 / 94

Markov Chain Monte Carlo I

A Markov chain is a sequence of random variables {xn; n ∈ N} which satisfies the
property

P(xn|x0, ...xn−1) = P(xn|xn−1)

Goal: Given a distribution π, construct transition probabilities P such that
asymptotically as n→∞

1
n

n∑
i=1

φ(xi)→
∫
φ(x)π(x)dx

and
Xi ∼ π

Examples:

π(x) = Z−1 exp{−βH(x)}
Autoregression for |α| < 1

Xn = αXn−1 + Vn,Vn ∼ N(0, σ2)

Here π(x) = N (x ; 0, σ2

1−α2)

69 / 94

Markov Chain Monte Carlo I

Random Walk on a circle
The walker at time state i is in one of the four points
At state i + 1 the walker jumps to one of the two neighbours with probability p and
stays at the same point with probability 1− 2p.

Let P(xi+1|xi) =: Pxi ,xi+1 then

P =


1− 2p p 0 p

p 1− 2p p 0
0 p 1− 2p p
p 0 p 1− 2p

 , p ≤ 1/2

Px,y ≥ 0,
∑

y Pxy = 1

Calculate Pn

lim
n→∞

Pn =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 = π

a uniform distribution, as expected!

70 / 94

Markov Chain Monte Carlo I

We want:

The desired distribution π to be a fixed point of the algorithm∫
P(x , y)πdx = π(y)

The successive distributions of the Markov chain converges towards π

The estimator 1
n

∑n
i φ(xi) converges and asymptotically Xn ∼ π

For every π there exists infinitely many P that have π as there invariant
distribution.

How to choose a good one? Criterion: Rate of convergence

Convergence ensured if the chain is irreducible, aperiodic and every state can be
reached.

We require:

Irreducibility: From any state we can go to any state

∀x , y ∈ S ∃n ∈ N, n > 0 : (Pn)xy > 0

Aperiodicty

then, if P is irreducible and aperiodic we have

limn→∞ Pn = π

71 / 94

Markov Chain Monte Carlo II

if πy is not identically zero, then∑
y∈S

πy = 1,
∑
y∈S

πyPyx = πx

πx is a unique non-negative solution of the above equation and a probability
distribution on S.

If we know πx construct P such that πx is its equilibrium distribution. For this it is
enough to choose P such that

1
∑

y∈S πyPyx = πx

2 P is irreducible and aperiodic

Replace (1) by the detailed balance condition

πyPyx = πxPxy

which implies (1).

72 / 94

Metropolis-Hastings Monte Carlo I

We will now construct an algorithm to that realizes a constant temperature ensemble,
i.e.

π(x) = Z−1 exp{−βH(x)}

The state space can for example be configurations of spins (see later Ising model),
positions of atoms in a liquid, polymers conformation etc.

Let P0 = {p(0)
xy } be a irreducible transition matrix.

We will use P0 to propose transitions from x to y .

These transitions will then either be accepted with a probability axy and rejected
1− axy .

73 / 94

Metropolis-Hastings Monte Carlo II

The complete transition matrix P is then constructed as:

pxy := p
(0)
xy axy if x 6= y ,

pxx := p
(0)
xx +

∑
x 6=y

p
(0)
xy (1− axy) [zero transition] ,

where ∀ x , y ∈ S : 0 ≤ axy ≤ 1 .

With this we have

axy

ayx
=
πyp

(0)
yx

πxp
(0)
xy

∀x , y ∈ S : x 6= y .

74 / 94

Metropolis-Hastings Monte Carlo III

If we use

axy := F

(
πyρ

(0)
yx

πxρ
(0)
xy

)
∀x , y ∈ S : x 6= y (66)

then

axy

ayx
=

F

(
πy p

(0)
yx

πxp
(0)
xy

)
F

(
πxp

(0)
xy

πy p
(0)
yx

) =
F (z)

F (1/z)

!
= z (67)

with

z :=
πxp

(0)
xy

πyp
(0)
yx

. (68)

The condition of detailed balance is satisfied if

∀z :
F (z)

F (1/z)

!
= z . (69)

75 / 94

Metropolis-Hastings Monte Carlo IV

Often used choices are

F (z) = min(z, 1) (70)

and

F (z) =
z

1 + z
. (71)

Note that the proposals of states need not to be symmetric. As a further point
we note that is was proven[41] that the choice F (z) = min(z, 1) is optimal in
that suitable candidates are rejected least often and hence statistical efficiency is
optimized

76 / 94

Metropolis-Hastings Monte Carlo Algorithm I

[1, 42]

Algorithm 11 Metropolis-Hastings Monte Carlo Algorithm

1: for i=0; i < mcsmax do
2: sample a new state x ;
3: set y = xi ;
4: sample a uniform random number r from (0, 1);

5: if r ≤ min{
p0
xyπx

p0
x yπy

, 1} then
6: xi+1 = x ;
7: else
8: xi+1 = y ;
9: end if

10: end for

77 / 94

Error Analysis I

What does this mean if we calculate the time average of an observable A, which
by necessity can cover only a finite observation time?

Let us consider the statistical error for n successive observations Ai , i = 1, ..., n:

〈
(δA)2

〉
=

〈[
n−1

n∑
i=1

(Ai − 〈A〉)2
]〉

. (72)

In terms of the autocorrelation function for the observable A

φA(t) =
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
(73)

We define two characteristic correlation times.

Exponential autocorrelation time
Typically we expect that (asymptotically, for large t) one gets an exponential
behavior

ΦA(t) ∝ exp
(
−

t

τA,exp

)
(74)

We do expect, though, that the complete expression involves a sum over several
such terms; here we consider only the asymptotically most leading term with largest
autocorrelation time.

78 / 94

Error Analysis II

Integrated autocorrelation time

τ intA =

∫ ∞
0

φA(t)dt . (75)

We can rewrite the statistical error as〈
(δA)2

〉
∼=

2τA
nδt

[〈
A2〉− 〈A〉2] , (76)

where δt is the time between observations, i.e., nδt is the total observation time
τobs.

We notice that the error does not depend on the spacing between the
observations but on the total observation time.

Also the error is not the one which one would find if all observations were
independent.

The error is enhanced by the characteristic (integral) correlation time between
configurations.

Only an increase in the sample size and/or a reduction in the characteristic
correlation time τA can reduce the error.

79 / 94

Hybrid (Hamiltonian) Monte Carlo I

In conventional Monte-Carlo (MC) calculations of condensed matter systems,
such as an N-particle system with a Hamiltonian H = U , only local moves
(displacement of a single particle) are made.

Updating more than one particle typically results in a prohibitively low average
acceptance probability 〈PA〉.
This implies large relaxation times and high autocorrelations especially for
macromolecular systems.

In a Molecular Dynamics (MD) simulation, with H = T + U , on the other hand,
global moves are made.

The MD scheme, however, is prone to errors and instabilities due to the finite
step size in time.

In order to introduce temperature in the microcanonical context, isokinetic MD
schemes are often used.

However, they do not yield the canonical probability distribution, unlike
Monte-Carlo calculations.

80 / 94

Hybrid (Hamiltonian) Monte Carlo II

The Hybrid Monte-Carlo (HMC) method combines the advantages of Molecular
Dynamics and Monte-Carlo methods:

it allows for global moves (which essentially consist in integrating the system
through phase space);
HMC is an exact method, i.e., the ensemble averages do not depend on the step
size chosen;
algorithms derived from the method do not suffer from numerical instabilities due to
finite step size as MD algorithms do;
and temperature is incorporated in the correct statistical mechanical sense.

In the HMC scheme global moves can be made while keeping the average
acceptance probability 〈PA〉 high.

81 / 94

Hybrid (Hamiltonian) Monte Carlo III

One global move in configuration space consists in integrating the system
through phase space for a fixed time t using some discretization scheme (δt
denotes the step size)

gδt : IR6N −→ IR6N

(x , p) −→ gδt(x , p) =: (x ′, p′)

of Hamilton’s equations

dx

dt
=

∂H
∂p

dp

dt
= −

∂H
∂x

. (77)

Since the system is moved deterministically through phase space, the conditional
probability of suggesting configuration x ′ starting at x is given by

pC (x → x ′)dx ′ = pC (p)dp. (78)

82 / 94

Hybrid (Hamiltonian) Monte Carlo IV

The initial momenta are drawn from a Gaussian distribution at inverse
temperature β:

pC (p) ∝ e−β
∑N

j=1
p2j
2m . (79)

Thus

PA((x , p)→ gδt(x , p)) = min{1, e−βδH}, (80)

where

δH = H(gδt(x , p))−H(x , p)

is the discretization error associated with gδt . Using the algebraic identity

e−H(x,p) min{1, e−δH} = e−H(gδt (x,p)) min{eδH, 1} (81)

it can be shown that for a discretization scheme which is time-reversible

g−δt ◦ gδt = id (82)

83 / 94

Hybrid (Hamiltonian) Monte Carlo V

and area-preserving

det
∂gδt(x , p)

∂(x , p)
= 1, (83)

detailed balance is satisfied:

p(x)pM(x → x ′)dxdp = p(x)pC (p)PA((x , p)→ gδt(x , p))dxdp

= p(x ′)pC (p′)PA(gδt(x , p)→ (x , p))dxdp

= p(x ′)pC (p′)PA((x ′, p′)→ g−δt(x ′, p′))dxdp

= p(x ′)pC (p′)PA((x ′, p′)→ g−δt(x ′, p′))dx ′dp′

= p(x ′)pM(x ′ → x)dx ′dp′.

Thus, provided the discretization scheme used is time-reversible and
area-preserving, the HMC algorithm generates a Markov chain with the
stationary probability distribution p(x).

The probability distribution is entirely determined by the detailed balance
condition.

Therefore neither p(x) nor any ensemble averages depend on the step size δt
chosen.

84 / 94

Hybrid (Hamiltonian) Monte Carlo VI

However, the average acceptance probability 〈PA〉, because of (80), depends on
the average discretization error 〈δH〉 and hence does depend on δt.

It can be shown that for (%,T) 6= (%c ,Tc)

〈PA〉 = erfc(
1
2

√
β〈δH〉)

is a good approximation for sufficiently large systems (N → ∞) and small step
sizes (δt → 0).

From normalization and the area-preserving property one has

〈e−βδH〉 = 1. (84)

Equation (84) can be expanded into cumulants

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉+ · · · .

In order to obtain a nonzero average acceptance probability 〈PA〉 in the limit
N → ∞ one has to let δt → 0, keeping 〈(δH− 〈δH〉)2〉 fixed.

85 / 94

Hybrid (Hamiltonian) Monte Carlo VII

In this limit higher-order cumulants will vanish. The resulting distribution of the
discretization error will thus be gaussian with mean and width related through

〈δH〉 =
β

2
〈(δH− 〈δH〉)2〉. (85)

From (80) and (85) one has in this case

〈PA〉 =
1√

2π〈(δH− 〈δH〉)2〉

∫ ∞
−∞

dtmin{1, e−βt}e
− (t−〈δH〉)2

2〈(δH−〈δH〉)2〉

= erfc(
1
2

√
β〈δH〉). (86)

The square root in (86) is always well defined since (84) implies

〈δH〉 ≥ 0.

Equality holds in the limit δt → 0, where energy is conserved exactly and
〈PA〉 = 1.

Increasing the step size will result in a lower average acceptance probability 〈PA〉.
Varying δt, the average acceptance probability 〈PA〉 can thus be adjusted to
minimize autocorrelations.

86 / 94

Hybrid (Hamiltonian) Monte Carlo VIII

The momenta do not necessarily have to be drawn from the Gaussian distribution.

A particularly simple and computationally efficient alternative to would be a
uniform momentum distribution.

This choice, however, did not prove successful, since a cut-off has to be
introduced for computational reasons. This cut-off must be taken into account in
PA, leading to a very low average acceptance probability 〈PA〉.
It is clear that instead of choosing a discretization scheme of Hamilton’s
equations (77) any time-reversible and area-preserving discrete mapping can be
used to propagate the system through phase space.

87 / 94

Rejection-Free Monte Carlo I

88 / 94

Excercises I

Exercise 1: Test
abc

89 / 94

Bibliography I

[1] M. N. Rosenbluth A. H. Teller N. Metropolis, A. W. Rosenbluth and E. Teller. J.
Chem. Phys., 21:1087–1091, 1953.

[2] T. E. Wainwright B. J. Alder. J. Chem. Phys., 27(1208), 1957.

[3] A. Rahman. Phys. Rev. A, 136:405, 1964.

[4] A. Rahman and F. Stillinger. Molecular dynamics study of liquid water. J. Chem.
Phys., 55(5), 1971.

[5] M. Karplus P.G. Wolynes J.A. McCammon, B.R. Gelin. Nature, 262:325–26,
1976.

[6] J. P. Valleau G. Torrie. J. Comput. Phys, 23:187, 1977.

[7] Bernd A. Berg and Thomas Neuhaus. Multicanonical ensemble: A new approach
to simulate first-order phase transitions. Physical Review Letters, 68(1):9–12, 01
1992.

[8] Fugao Wang and D. P. Landau. Efficient, multiple-range random walk algorithm
to calculate the density of states. Physical Review Letters, 86(10):2050–2053, 03
2001.

[9] Berend Smit and Daan Frenkel. Understanding Molecular Simulation. Academic
Press, 2001.

[10] Andrew R. Leach. Molecular Modelling: Principles and Applications.
Prentice-Hall, 20012.

90 / 94

Bibliography II

[11] K. Binder and D.W. Heermann. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag (first editon 1988), 2017.

[12] P. Allen and D.J. Tildesley. Computer Simulations of Liquids. Clarendon Press,
Oxford, 1987. , ,.

[13] Robert L Jernigan and Ivet Bahar. Structure-derived potentials and protein
simulations. Current Opinion in Structural Biology, 6(2):195–209, 1996.

[14] S. Miyazawa and R.L. Jernigan. Macromolecules, 18:534–552, 1985.

[15] Miriam Fritsche, Ras B. Pandey, Barry L. Farmer, and Dieter W. Heermann.
Variation in structure of a protein (h2ax) with knowledge-based interactions.
PLoS ONE, 8(5):e64507–, 05 2013.

[16] B. J. Alder T. E. Wainwright. Nuovo cimento, Suppl. Sec., 9:116, 1958.

[17] T. E. Wainwright B. J. Alder. J. Chem. Phys., 31:456, 1959.

[18] T. E. Wainwright B. J. Alder. J. Chem. Phys., 33:1439, 1960.

[19] 1439 B. J. Alder, T. E. Wainwright 33. J. Chem. Phys., 33:1439, 1960. R.
Beeler, Jr:. In Physics of Many-Particle Syslems, ed. by C. Meeron (Gordon and
Breach, New York 1964).

[20] L. Verlet. Phys. Rev., 159:98, 1967.

[21] Y. B. Suris. Comput. Math. Phys., 27:149–156, 1987.

91 / 94

Bibliography III

[22] M. Duncan B. Gladman and J. Candy. Symplectic integrators for long-term
integrations in celestial mechanics. Celestial Mech. Dynam. Astronom,
52:221–240, 1991.

[23] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman
and Hall, London, 1994.

[24] Randall B. Shirts, Scott R. Burt, and Aaron M. Johnson. Periodic boundary
condition induced breakdown of the equipartition principle and other kinetic
effects of finite sample size in classical hard-sphere molecular dynamics
simulation. The Journal of Chemical Physics, 125(16), 2006.

[25] M. L. Klein S. Nose. J. Chem. Phys., 78:6928, 1983. Dahlquist, A. Bjorck:
Numerical Methods (Prentice Hall, Englewood Cliffs, NJ 1964).

[26] P. H. Berens K. R. Wilson: W. C. Swope, H. C. Andersen. J. Chem. Phys.,
76:637, 1982.

[27] D. Chandler J. D. Weeks and H. C. Andersen. J. Chem. Phys., 54:5237, 1971.

[28] R. B. Hickman A. J.C. Ladd W. T. Ashurst B. Moran: Phys. Rev. A 22 l690
W. G. Hoover, D. J. Evans. 1980. 1980.

[29] l l l W. G. Hoover. Physica A 18. 1983. 1983.

[30] l l l W. G. Hoover. Physica A 18. W. 1983. G. Hoover. In Norrlinear Fluid
Behaviour, ed. by H.J. Hanley (North-Holland, Amsterdam).

[31] B. Moran: Phys. Rev. Lett. 48 3297 W. G. Hoover, A. J.C. Ladd. 1983. 1983.

92 / 94

Bibliography IV

[32] 63 D. J. Evans, G. P. Morriss: Chem. Phys. 77. 1983. 1983.

[33] 63 D. J. Evans, G. P. Morriss: Chem. Phys. 77. D. 1983. J. Evans: J. Chem.
Phys. 78, 3297 (l983).

[34] 3067 J. M. Haile, S. Gupta J. Chem. Phys. 79. 1983. 1983.

[35] G. P. Morriss: Daresbury Lab. Information Quarterly for Computer Simulation of
Condensed Phases 17 25 D. M. Heyes, D. J. Evans. 1985. 1985.

[36] 1243 D. Brown, J. H.R. Clarke: Mol. Phys. Sl. 1984. 1984.

[37] 179 J. R. Ray: Am. J. Phys. 40. 1972. 1972.

[38] 2384 H. C. Andersen: J. Chem. Phys. 72. 1980. 1980.

[39] 2412 J. M. Haile, H. W. Graben: J. Chem. Phys. 73. 1980. 1980.

[40] G. van Kampen. Stochastic Processes in Physics and Chemistry. North Holland,
Amsterdam, 1981.

[41] 607-612 P. H. Peskun, Biometrika 60. 1973.
[42] 97-109 W. K. Hastings Biometrika 57. 1970. 1970.

93 / 94

Index I

Accept/Reject Method, 63
additive generators, 54
Arrhenius law, 46
autocorrelation function, 76
Constant Pressure Molecular Dynamics,
38
Constant Temperature Molecular
Dynamics, 35
damped-force method, 35
diffusion matrix, 45
enthalpy, 38
Error Analysis, 76
Event-Driven Molecular Dynamics, 43
Force Fields, 9
Gaussian isokinetic MD, 35
generalized shift-register generator, 59
Gibbs-Sampler, 65
Hamiltonian Monte Carlo, 78
Hybrid Monte Carlo, 78
lagged Fibonacci generator, 57

Langevin Dynamics, 44
Langevin equation, 45
linear congruential generators, 53
Liouville theorem, 20
Markov Chain Monte Carlo, 67
Metropolis-Hastings Monte Carlo, 71
Molecular Dynamics, 17
Molecular Dynamics (MD), 17
Monte Carlo Method, 49
multiplicative random number generator,
54
period, 54
Random Numbers, 51
rejection-free Monte Carlo, 79
symplectic, 18
sympletic, 21
Taylor expansion, 22
Verlet algorithm, 23
Wiener process, 45

94 / 94

	Introduction
	General Remarks
	Force Fields

	Molecular Dynamics
	Basic Algorithm
	Boundary Conditions
	Force Calculation
	Verlet Algorithm
	Example
	Constant Temperature Molecular Dynamics
	Constant Pressure Molecular Dynamics
	Event-Driven Molecular Dynamics

	Langevin Dynamics
	Monte Carlo Method
	Random Numbers
	Accept/Reject Method
	Gibbs-Sampler
	Markov Chain Monte Carlo
	Metropolis-Hastings Monte Carlo
	Error Analysis
	Hybrid (Hamiltonian) Monte Carlo
	Rejection-Free Monte Carlo

	Excercises
	Bibliography
	Index

