
Biophysics
A Computational Approach

Concepts, Models, Methods and Algorithms
Lecture 4: Growth, Aggregation and Deposition

Dieter W. Heermann

Heidelberg University

November 21, 2016

1 / 34



Table of Contents

1. Introduction
2. Stochastic Particle based Growth
Models

Eden Model
Voter Model
Leath Cluster Model
Diffusion Limited Aggregation Model
Deposition

3. Contact Processes
4. Exclusion Processes

5. Cellular Automata Models of Growth
6. growth of bacterial colonies
7. network growth
8. Epedemic Spreading
9. Fire Spreading
10. Cluster-Cluster Aggregation
11. Excercises
12. Bibliography
13. Index

2 / 34



Introduction I

In essence many of the phenomena associated with growth, aggregation and
deposition can be thought of in terms of particles diffusion problems [1]. A particle
diffuses through a medium until it gets in contact with either another particle of a
cluster of particles. Depending on the model the particles sticks or is reflected a
number of times. This simple model in its variations able to reproduce many of the
structures one observes.
On the other hand there are cellular automata-based models.
Assume an object with N elements at positions ri with unit mass. We define the
radius of gyration of the object by

R2
g =

1
2N2

∑
i,j=1..N

(ri − rj )
2 . (1)

For later purposes we note that an alternative to this approach is to define this radius
via the principle moments of the gyration tensor S

Smn =
1
N

N∑
i=1

r
(m)
i r

(n)
i (2)

where we assume

N∑
i=1

ri = 0 (3)
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Introduction II

R2
g = λ2

1 + ...+ λ2
d . (4)

Another possibility is to define the extend of the object by the smallest box that is
needed such that object fits into the box

Rb = max
i,j=1,...,N

|ri − rj | . (5)

We further define the asphericity

b = λ2
d −

1
d − 1

(λ2
1 + ...+ λ2

d−1) =
d

d − 1
λ2
d −

R2
g

2
(6)

Let R be the radius of the cluster (Rg ,Rb) and M be the mass (here the number of
occupied lattice sites N) that belongs to cluster, then

M = N ∝ Rdf (7)

describes the relationship between the radius and the mass where we anticipate that
the object may not be compact but be fractal with the fractal dimension df < d .
Let ns be the number of sites at the surface and hi the distance from a reference
distance measuring the height of the surface. Then average height is given by

〈h〉 =
1
ns

∑
i

hi (8)

4 / 34



Introduction III

From this we derive surface roughness

σ2 =
1
ns

∑
i

(hi − 〈h〉)2 (9)
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Introduction IV

R
min

R
max

interface roughness

Figure: Interface roughness
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Particle Systems I

We shall start with a lattice like Λ = Ld or Λ = Zn × Zm, where n and m are integers,
or a graph Λ = G . We will call a system a particle systems if

1 each site s ∈ Λ is in one of a finite number q of states, and

2 each site can change its state depending on the number of neighbouring sites

The time evolution of the particle system is described by a Discrete Time Markov
Chain. Let s(t) be the state of the site s at time t Then the particle system changes
its state Λ(t)→ Λ(t + 1) by the rate q(s, s′), where s′ denotes one of the possible
finite state that s can be in.
Updating rules

synchronous: synchronous updating of a discrete time process which updates all
of the sites simultaneously

asynchronous: a site is chosen at random
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Growth Models: Eden Cluster I

Eden[2] introduced a stochastic growth model which may be used to study the
proliferation of bacteria in a culture medium, propagation of epidemics, chemical
reactions, tumor growth etc. In the simplest variant of the model every site on the
periphery of the object has an equal probability of being selected as the next growth
site.
For simplicity, we assume that the growth takes place on a lattice Λ = Ld . Once a
lattice site s is initially chosen to be the seed, then the nearest neighbour sites are the
possible growth sites. Each of the perimeter sites is visited and given the chance to
change its state to being occupied. Once a site is occupied the nearest neighbour sites
that are not already part of the cluster are added to the list of perimeter sites. This
procedure is iterated.

Figure: Steps in the Eden cluster growth. The left panel shows and initial occupied (red) site.
A site of the perimeter (black) is chosen during the next step and given the chance to change
to being occupied. The right panel shows the situation after the perimeter site has changed its
state and additional perimeter sites have been added.
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Growth Models: Eden Cluster II

Algorithm 1 Basic Algorithm: Growth

choose initial site s
add first site to perimeter_list
for n_cycles do

len = length of perimenter_list
for len do

i iid from {0, .., len − 1}
s = select at random one of the nearest neighbours of perimeter_list(i)
if s not in perimeter_list and not in new_sites_list then

add s to new_sites_list
end if

end for
add new_sites_list to perimeter_list

end for
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Growth Models: Eden Cluster

1 import random
mcs_max = 100

3 random.seed (4711)

5 s = (0,0)
perimeter_list = []

7 new_sites_list = []
perimeter_list.append(s)

9
for mcs in range(mcs_max):

11 for n in range(len(perimeter_list)):
i = random.randrange (0,len(perimeter_list), 1)

13 s = perimeter_list[i]
d = random.randrange (0,4,1)

15 if d == 0:
sn = (s[0],s[1] -1)

17 elif d == 1:
sn = (s[0],s[1]+1)

19 elif d == 2:
sn = (s[0]-1,s[1])

21 elif d == 3:
sn = (s[0]+1 ,s[1])

23 elif d == 4:
print "should not happen"

25 if sn not in perimeter_list:
new_sites_list.append(sn)

27 perimeter_list.extend(new_sites_list)
new_sites_list = []

Code 1: eden.py
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Growth Models: Eden Cluster

One starts from one occupied site on a lattice as a seed for a cluster. At every “time
step" one additional randomly selected perimeter site is occupied. A perimeter site is
an empty neighbour of an already occupied site.

Figure: Eden-cluster

The Eden cluster is anisotropic due to the underlying lattice, i.e. its shape tends
to lengthen along the directions of the lattice axes.

Initially unoccupied sites in the interior eventually get filled in

There is no scale invariance

the cluster is self-affine
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Voter Model

Let Λ = Ld be a lattice. Let f be a function (usually increasing). For each site s of
the lattice a set of neigbours (nearest, next-nearest, etc.) is chosen. Start with a seed
which is set to be occupied. Choose at random a site of the lattice. Let count(s) be
the number of occupied neighbour sites of s. The site s changes its state to occuied
with probability f (count(s)).
A variation on this that an occupied site becomes occupied at a rate
delta/(1 + count(s)). A unoccupied site becomes occupied at a rate equal to
1/(1 + count(s))

12 / 34



Leath Cluster Model

Algorithm 2 Basic Algorithm: Leath

choose initial site s
add s to visited list
add neighbours of s to perimeter_list
while perimeter_list not empty and max_sites not reached do
select site s and delete from perimenter_list
add s to visited sites
if p < random number then
add s to sites_list
add neighbours of s to perimeter_list

end if
end while
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Leath Cluster Model

Implementation using a stack. Here the perimenter_list is a stack where the pop
operation deletes the element from the stack. Since the push (append) put the next
perimeter site right at the top of the stack, the growth may proceed ’in perferred
direction’ as the example in Figure 4 shows. the growth here terminated due to the
criterion of ’maximum number of sites reached condition. While in principle the
implementation is correct if beside the natural termination criterion no other is used,
in practice the implementation is not correct. A deque implementation corrects the
situation.

def addSiteToList(s,sites_list):
2 sites_list.append(s)

return sites_list
4

def addNeigboursToList(s,perimeter_list ,sites_visited_list):
6 sn = (s[0],s[1] -1)

if (sn not in perimeter_list and sn not in sites_visited_list):
8 perimeter_list.append(sn)

sn = (s[0],s[1]+1)
10 if (sn not in perimeter_list and sn not in sites_visited_list):

perimeter_list.append(sn)
12 sn = (s[0]-1,s[1])

if (sn not in perimeter_list and sn not in sites_visited_list):
14 perimeter_list.append(sn)

sn = (s[0]+1,s[1])
16 if (sn not in perimeter_list and sn not in sites_visited_list):

perimeter_list.append(sn)
18 return perimeter_list

Code 2: Leath cluster growth algorithm part 1: functions
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Leath Cluster Model

1 maxSites = 100000
random.seed (4711)

3
# Initialize

5 p = 0.5
s = (0,0)

7 perimeter_list = []
sites_list = []

9 sites_visited_list = []
addSiteToList(s,sites_list)

11 addSiteToList(s,sites_visited_list)
addNeigboursToList(s,perimeter_list ,sites_list)

13
# Main loop

15 while (len(perimeter_list) > 0 and len(sites_list) < maxSites):

17 s = perimeter_list.pop()
addSiteToList(s,sites_visited_list)

19 if (random.random () < p):
addSiteToList(s,sites_list)

21 addNeigboursToList(s,perimeter_list ,sites_list)

Code 3: Leath cluster growth algorithm part 2
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Leath Cluster Model

Figure: stack
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Leath Cluster Model

Figure: Leath cluster at p = 0.55 which is well below the percolation threshold of 0.592746
(see ...)
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Diffusion Limited Aggregation Model

Witten and Sanders [3]
Growth of bacterial colonies

b

a

Figure: Setup procedure for the injection of a random walker for the diffusion limited
aggregation (DLA). The right hand side figure shows an example of a DLA-cluster

Internal diffusion-limited aggregation (iDLA)
is a cluster growth process in which particles start at one or more sources within a
cluster, diffuse outward, and are added to the cluster at the first site outside it they
reach [4]

18 / 34



Diffusion Limited Aggregation Model

A variant of the DLA is the Internal diffusion-limited aggregation (iDLA)
is a cluster growth process in which particles start at one or more sources within a
cluster, diffuse outward, and are added to the cluster at the first site outside it they
reach [4]
ballistic growth
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Diffusion Limited Aggregation Model

Algorithm 3 Basic Algorithm: DLA

choose initial site s
choose a radius R1 around s
choose a radius R2 around s such that R1 < R2
start a random walker at a random position on the circle with radius R1
while max_sites not reached do
while position of random walker within R2 do
advance the random walker one step
if random walker is nearest neighbour of an occupied site then
add site to list of occupied sites
start a new random walker at a random position on the circle with radius R1

else if site is outside of R2 then
start a new random walker at a random position on the circle with radius R1

end if
compute distance d of the nearest occupied site to R1
if d < dc then

increase R1 and R2
end if

end while
end while
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Diffusion Limited Aggregation Model

1 while (sites < max_sites):
w = start_rw_on_circle(r1 ,midx ,midy)

3 while (check_inside_disk(w,r2 ,midx ,midy)):
w = advance_random_walk(w)

5 if ( nearest_neighour_of_occupied_site(w,grid) ):
grid[w[0]][w[1]] = 1

7 sites += 1
cm = center_of_mass(grid ,cols ,rows)

9 r1 = cluster_radius(cm) + d
r2 = r1 + dx

11 w = start_rw_on_circle(r1 ,midx ,midy)

Code 4: Diffusion-Limited Aggregation
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Diffusion Limited Aggregation Model

Figure: DLA-cluster with 10000 occupied sites
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C(r , r ′) =< n(r)n(r + r ′) >∝ rd−df (10)

fractal dimension for d = 2 df = 1.66
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Deposition

Figure:
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Contact Processes I

We shall assume either a lattice Λ = Ld or Λ = Zn × Zm, where n and m are integers,
Λ = Zd , or generally a graph Λ = G where each node is called a site s. Let λ ∈ (0,∞).
In the contact process [5] each site can be occupied or empty (infected, healthy):

Occupied (Infected) sites become empty (healthy) at rate 1

empty sites become occupied at a rate λ time the number of occupied neighbours

While on a finite set, the infection dies out eventually for any value of λ, on a
d-dimensional lattice, there is a critical value λd [5]

1
2d
≤ λc ≤

2
d

(11)

such that

all sites become empty for λ ≤ λd
there are sites that are occupied for λ > λd

A variation of the basic model is to assume a random environment [6]. This can for
example be realized by assuming an edge dependent control parameter, i.e. we replace
λ with λe where edge e ∈ E(Λ) . Thus we have a collection (λe)e∈E(Λ) of random
variables.

Shape Theorems
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Exclusion Processes I

exclusion processes [7]
[8]
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Cellular Automata Models of Growth I

multi-cellular biological systems (MCBS) [9]
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Cluster-Cluster Aggregation I

Figure: image taken from the paper Stability, cytotoxicity and cell uptake of water-soluble
dendron?conjugated gold nanoparticles with 3, 12 and 17 nm cores by Deol et al [10] showing
the aggregation of gold particles

Kolloiden

Ausgangssituation: auf einem Gitter diffundieren Einzelteilchen
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Cluster-Cluster Aggregation II

wenn zwei Partikel sich beruehren, bilden sie Cluster aus zwei Teilchen, die
ebenfalls diffundieren

Falls ein Cluster einen anderen Cluster oder ein Einzelteilchen trifft, wird aus
beiden ein groesseres Aggregat gebildet.

Die Masse bleibt waehrend der Aggregation konstant

d = 2 df = 1.42

d = 3 df = 1.78

gold particle aggregation in cells [11]
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Excercises I

Exercise 1: Richardson’s Model [12]
In the Richardson’s model occupied sites remain occupied. Unoccupied
sites change state to occupied at time t + 1 with probability p if at least
one neighbor was occupied at time n. Show numerically that the
asymptotic shape of the object (in d = 2) has a straight edge if p > pc ,
where pc is a critical value. Determine pc .

Exercise 2: Williams and Bjerknes Tumor Growth Model [13]
This model generalizes the Eden model as a stochastic model for the
spread of cancer cells (skin cancer). At each time step a site can become
either ill with probability α or healthy with probability β. Thus the ration
κ = α/β determines the behaviour with κ =∞ recovering the Eden
model. Rewrite the above Eden model algorithm to incorporate the
modification

Exercise 3: DLA with reaction-controlled absoption
Assume a DLA model. Let P be the probability for a particle to react with
the nearest-neighbour site that is occupied. Modify the above program in
incorporate the changed absorption.
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Excercises II

Exercise 4: Continuum Model of DLA
In the continuum model of DLA each particle is assumed to have a radius
a. At every step the random walker is performing a gaussian random walk
with steps size ≤ a. The particles sticks to the aggregate is the distance
to the nearest particle is ≤ a. Modify the above program in incorporate
the changed absorption. Show that

d = 2 df = 1.71 (12)

d = 3 df = 2.5 (13)
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