
Biophysics
A Computational Approach

Concepts, Models, Methods and Algorithms
Lecture 5: Pattern and Structure Formation

Dieter W. Heermann

Heidelberg University

August 31, 2016

1 / 37

Table of Contents

1. Introduction

2. Fractals
Basic Definitions
Iterated Function Systems

Percolation: Forrest Fires and the
Like
Fractal Flow

3. Excercises
4. Bibliography
5. Index

2 / 37

Introduction I

Pine cone
Source:http://jadecrompton.blogspot.de/

2012/02/fibonacci-in-nature.html

Snowflake
Source: Wikipedia

https://en.wikipedia.org/wiki/Snowflake

River delta
Source: Wikipedia

https://en.wikipedia.org/wiki/River_delta

3 / 37

Fractals I

If every point in a set S has arbitrarily small neighbourhoods whose boundaries do not
intersect S , then S has a topological dimension of 0.
The topological dimension of a subset of S ⊆ Rn is the least non-negative interger k
such that each point of S has arbitrarily small neighbourhoods whose boundaries meet
S in a set of dimension k − 1.
A set S is self-similar (deterministically), if it can be divided into N congurent
subsets, each of which when magnified by a constant factor M yields the entire set S.
The fractal dimension of a self-similar set S is

df =
log(N)

log(M)
(1)

A fractal is a set whose fractal dimension exceeds it topological dimension. Clearly,
there are many sets that are self-similar but not fractal. Since natural object are not
the union of exact reduced copies of the entire set we need to extend the definition to
include variations, i.e. statistical self-similarity .

4 / 37

Fractals: Koch Curve

The Koch Curve starts with a closed unit interval. At the first stage remove the
middle third of the interval an replace it with two line segments of length 1/3 to form
a virtual triangle. Repeat the procedure on every line segment.
The following function implements the Koch algorithm recursively.

1 def koch(length , depth):
if length == 0:

3 forward(depth)
else:

5 koch(t, length -1, depth /3)
go_left (60)

7 koch(length -1, depth /3)
go_right (120)

9 koch(length -1, depth /3)
go_left (60)

11 koch(length -1, depth /3)

5 / 37

Fractals: Koch Curve

Another possibility to implement the Koch algorithm is to use pattern matching and
replacement of certain pattern in a resulting string. This is shown in the following
listing

1 for i in xrange(steps):
path = path.replace("F", "FLFRFLF")

Starting with a series of line segments that is closed we can generate constructs that
have the appearance of snow flakes (c.f. Figure 1).

Figure: Koch curve generated by an iteration algorithm 6 / 37

Fractals (continued)

the relationship between scale and detail
Felix Hausdorff (1868-1942) and Abram Besicovitch(1891-1970)
The Hausdorff-Besicovitch Dimension
A natural idea to calculate the fractal dimension is to cover the object. Thus we cover
an object with boxes and then calculate how many boxes N are needed to cover the
object entirely. This depends on the linear dimension of the box b. Plot the results on
a log-log plot and determine the slope. The resulting value of the slope is the box
dimension

dB ≈ df (2)

Algorithm 1 Box Counting Algorithm

Generate a non-overlapping regular lattice with lattice constant l
for boxes of the lattice do
Compute the number of objects within the box

end for

7 / 37

Fractals: Box Counting Algorithm

In the box counting algorithm (box-covering method) for networks [1] we calculate the
minimum number of boxes NB of linear dimension l that is needed to cover the object

NB(l) ∼ ldB (3)

where dB is the fractal dimension.
In the cluster-growing method on counts the average number objects Mc that are
within a range l

< Mc (l) >∼ ldB (4)

if N ∼ NB(l) < Mc (l) >, then both calculated the same fractal dimension. In scale
free networks we have

< Mc (l) >∼ e l/l0 (5)

with some constant l0 [1].

8 / 37

Fractals: Box Counting Algorithm (continued)

Algorithm 2 Random Sequential Box Covering Algorithm

while all not all vertices are burned and assigned to their respective boxes do
Label all vertices as not burned NB
Select a vertex randomly at each step; this vertex serves as a seed.
Search the network by a distance l from the seed
Burn all NB vertices that are within the distance l from the seed
Assign newly burned vertices to the new box.
if no newly burned vertex is found then

the box is discarded
end if

end while

9 / 37

Iterated Function Systems

Assume that we are given x0 as a starting point and that we define two functions

F0 =
1
3
x (6)

F1 =
1
3
(x − 1) + 1 (7)

Consider the orbit of the initial value x0 under the system of functions {F0,F1} where
at each step we choose to apply either F0 or F1 randomly with equal probability. The
application of the system of functions is repeated for a fixed number of iterations. The
end point of this iteration is then one point in a generated set of initial conditions.
This basic algorithm is shown in Algorithm 3.

10 / 37

Iterated Function Systems

Algorithm 3 Iterated Function System

for n_points do
Choose initial condition x = x0
for n_cycles do

r iid from {0, 1, ...n − 1}
if r == 0 then

x = F0(x)
else if r == 1 then

x = F1(x)
else if r == 2 then

...
else if r == n − 1 then

x = Fn−1(x)
end if

end for
Add new fixed point x to set

end for

11 / 37

Iterated Function Systems

The above example can be easily generalized to higher dimensions.
As a further example we generate a fern. For this we we apply the following linear
transformation (

xn+1
yn+1

)
=

(
a b
c d

)(
xn
yn

)
+

(
e
f

)
(8)

following and using the parameters Bradley [2]:

F0 :

(
+0.00 +0.00
+0.00 +0.16

)(
0
0

)
1% (9)

F1 :

(
+0.85 +0.04
−0.04 +0.85

)(
0
1.6

)
85% (10)

F2 :

(
+0.20 −0.26
+0.23 +0.22

)(
0
1.6

)
7% (11)

F3 :

(
−0.15 +0.28
+0.26 +0.24

)(
0

0.44

)
7% (12)

12 / 37

Iterated Function Systems

Figure: Fern fractal produced by an iterated function system. The parameters are taken from
http://www.stsci.edu/ lbradley/seminar/ifs.html with 500 iteration steps. Shown is the result
for 100000.

13 / 37

Percolation I

Consider a lattice, which we take, for simplicity, as a two-dimensional square lattice.
Each lattice site can be either occupied or unoccupied. A site is occupied with a
probability p ∈ [0, 1] and unoccupied with a probability 1− p. If p is small then only a
tiny fraction of the sites is occupied and only small isolated patches of occupied sites
that are close to each other exist. On the other hand, if p is large, then large patches
of near lying occupied sites exist. We may at this point speculate that for p less than
a certain probability pc only finite clusters exist on the lattice. We define more
precisely what we mean by patches or clusters by saying: A cluster is a collection of
occupied sites connected by nearest-neighbour distances (see Figure 3). For p larger
than or equal to pc , there exists a large cluster (for an infinite lattice, i.e., in the
thermodynamic limit) such that for an infinite lattice the fraction of sites belonging to
the largest cluster is zero below pc , and non zero above pc . For d = 1 the situation is
straight-forward: pc = 1. For d > 1 the computation of pc is non-trivial, and analytic
results for the percolation threshold pc are only available for certain dimensions or
special lattices.

14 / 37

Percolation II

Occupied Site

Unoccupied Site

Cluster of 3 Sites

Cluster of 1 Site

Figure: Definition of the percolation problem

15 / 37

Percolation III

Occupation probability
p = 0.1 Occupation probability

p = 0.59
Occupation probability

p > 0.59

ns(p, L) (13)

p =
∑
s<∞

sns(p, L) (14)

< s >=
∑
s>0

s2ns(p, L)/
∑
s>0

sns(p, L) (15)

16 / 37

Percolation IV

θ(p)

pc 1

p

1

0

Figure: percolation probability

17 / 37

Percolation V

pc (d) p

pχ()

Figure: percolation susceptibility

18 / 37

Percolation VI

0 0.2 0.4 0.6 0.8 1
Concentration (p)

0

0.2

0.4

0.6

0.8

1

Pe
rc

ol
at

io
n

Pr
ob

ab
ilit

y

2D Site Percolation
Percolation Probability

L = 24
L = 48
L = 128

Figure: percolation probability

19 / 37

Percolation VII

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

P
∞

p

N=1225, b2/N=1
N=2025, b2/N=1
N=3025, b2/N=1
N=4225, b2/N=1
threshold 2D site
N=810, b2/N=10

N=1440, b2/N=10
N=2560, b2/N=10

Figure: spanning probability

20 / 37

Percolation VIII

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Χ

p

N=1225
N=2025
N=3025
N=4225

Figure: spanning susceptibility

21 / 37

Percolation IX

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-3 -2 -1 0 1 2 3 4

C
hi

 *
 b

(ga
m

m
a/

nu
)

(p-pc)*b
(-1/nu)

Finite Size Scaling
 b2/N=1

N=1225
N=2025
N=3025
N=4225

Figure: Scaling

22 / 37

Percolation I

Figure: NPC cluster definition

23 / 37

Percolation II

Figure: NPC cluster

24 / 37

Percolation I

Union Find Algorithm

25 / 37

Percolation

def union(x,y,labels):
2 if (x == 0):

labels[y] += 1
4 return y

if (y == 0):
6 labels[x] += 1

return x
8 if (x < y):

count = labels[y] + 1
10 labels[y] = -x

labels[x] += count
12 return x

elif (x == y):
14 labels[x] += 1

return x
16 else:

count = labels[x] + 1
18 labels[x] = -y

labels[y] += count
20 return y

22 return x

Code 1: union.py

26 / 37

Percolation

def find(x,labels):
2 pointer = labels[x]

if (pointer < 0):
4 while(pointer < 0):

la = -pointer
6 pointer = labels[la]

labels[x] = -la
8 x = la

return x

Code 2: union.py

27 / 37

Percolation

1 # Find the first non -zero site
i = 0

3 found = False
while (i<L and not found):

5 j = 0
while (j<L and not found):

7 if (lattice[i][j]==1):
index = (i,j)

9 found = True
j += 1

11 i += 1

13 if (not found):
All sites are empty: case p=0 or p very small

15 return
create the first label

17 i = index [0]
j = index [1]

19 lattice[i][j] = create(labels)

Code 3: union.py

28 / 37

Percolation

1 def find_clusters(lattice ,L,labels):

3 #continue from there on, but first row and column are specific
while (i<L):

5 while (j<L):
left = j-1

7 if (left < 0):
left = L-1

9 top = i-1
if (top < 0):

11 top = L-1
if (lattice[i][j] == 1):

13 if (i == 0):
top_label = 0

15 else:
top_label = find(lattice[top][j],labels)

17 if (j == 0):
left_label = 0

19 else:
left_label = find(lattice[i][left],labels)

21 if (top_label == 0 and left_label == 0):
isolated site

23 lattice[i][j] = create(labels)
else:

25 lattice[i][j] = union(left_label ,top_label ,labels)
j += 1

27 j = 0
i += 1

29
return

Code 4: union.py
29 / 37

Percolation I

0.00000000010

0.00000000100

0.00000001000

0.00000010000

0.00000100000

0.00001000000

 100 1000

’percolation.dat’
f(x)

Figure: Number of clusters percolation: seed = 47115 max_steps = 10000 L = 500 p =
0.5927460

30 / 37

Fractal Flow I

The global objective of project B-2 arises from the question whether, and if yes what,
statistical physics can contribute to a better understanding of porous materials. It is
well known that important paradigms of statistical physics are closely related to
phenomena arising during hydrodynamic flow in porous materials. When displacing a
high viscosity fluid (such as oil) by a low viscosity fluid (such as water) in a porous
medium one observes percolation clusters (more precisely invasion percolation) when
capillary forces dominate. One observes diffusion limited aggregation clusters when
viscous forces are dominant (see e.g. R. Lenormand and G. Daccord in "Random
fluctuations and pattern growth" H.E. Stanley and N. Ostrowsky (eds.) NATO ASI
Series E vol 157, Kluwer, Dordrecht 1988). A common feature of these observations is
selfsimilarity. Self- similar or fractal phenomena have recently attracted much
attention from statistical physicists (see e.g. "Fractals in Physics", L. Pietronero and
E. Tosatti (eds.), Elsevier Amsterdam 1986), and much progress has been made in
their study, as well as in the study of percolation and diffusion limited aggregation.
The application of these results to structure and dynamics of porous media promises
therefore to be of great interest.
Lung: Gas Diffusion through the Fractal Landscape of the Lung

31 / 37

Fractal Flow II

Diffusion on Fractals: Three-dimensional percolation threshold.
Particles are assumed to diffuse randomly in a porous medium. This medium is a
simple cubic lattice consisting of pores (empty sites) and rock (occupied sites).
Diffusion can take place only in the empty space, and empty and occupied sites
are distributed randomly. Increasing the fraction of empty sites, we change from
an impermeable to a permeable medium at a percolation threshold of 31 percent
of empty sites. Right at this threshold, the pore space is fractal, and the diffusion
becomes anomalous, i.e. the squared distance increases weaker than linearly with
time.

M.J.Velgakis, Physica A 159, 167 (1989)

Hydrodynamical Cellular automata
The cellular automata approximation of hydrodynamics (Frisch, Hasslacher, and
Pomeau, 1986) is presently restricted to two dimensions. Basically, molecules fly
with unit velocity along the lattice directions of a triangular lattice, scattering on
each other according to the law of momentum conservation. Brosa’s
implementation of this algorithm on the HLRZ Cray supercomputer is an order of
magnitude faster than the diffusion simulation mentioned above. Duarte and
Brosa simulated the flow around a cylinder between two plates and found good
agreement with old experimental data. The same algorithm is presently applied
to many such obstacles as a model for a porous medium. 2000 * 666 lattices can
be simulated within a minute on a Cray YMP; we average over 8 such lattices
with the same porous structure but a different initial velocity distribution.

32 / 37

Fractal Flow III

U.Brosa and D.Stauffer, J.Statistical Physics 57, 399 (1989)
J.A.M.S.Duarte+U.Brosa, J.Statistical Physics 59, 501 (1990)
D.Stauffer, invited talk A4a, EPS Condensed Matter Conference, Lisbon, April 1990

33 / 37

Excercises I

Exercise 1: Percolation Threshold
pc = 0.59274601 percolation threshold [3]

Exercise 2: Bond Percolation
Exercise 3: Correlated Site-Bond Percolation
Exercise 4: Snowflake Cellular Automaton hfill

abc

Exercise 5: Multiple Reduction Copy Machine Algorithms – MRCM Iterated
Function System:
Many fractals can be described with iterated function systems

34 / 37

Excercises II

An initial image is transformed by a set of affine transformations
(functions) producing a new image. The new image is then
transformed by the same affine transformations producing
another new image. Thus, each time the image is transformed,
an iteration occurs. If the transformation is contractive–that is,
the transformation brings points closer together–, then the image
will begin to converge. After infinitely many iterations, assuming
a contractive transformation, the image will converge to what is
called an attractor.
http://pages.cs.wisc.edu/ ergreen/honors thesis/IFS.html
Pythagorean Tree (or Pythagoras Tree):
http://ecademy.agnesscott.edu/ lriddle/ifs/pythagore-
an/pythTree.htm

35 / 37

Bibliography I

[1] J. S. Kim, K.-I. Goh, B. Kahng, and D. Kim. A box-covering algorithm for fractal
scaling in scale-free networks. Chaos, 17(2), 2007.

[2] www.stsci.edu/ lbradley/seminar/ifs.html, 2010.

[3] Jesper Lykke Jacobsen. High-precision percolation thresholds and Potts-model
critical manifolds from graph polynomials. Journal of Physics A Mathematical
General, 47(13):135001, April 2014.

36 / 37

Index I

, 14
box-covering method, 8
cluster-growing method, 8
fractal, 4
fractal dimension, 4
iterated function systems, 10

Koch curve, 5
percolation threshold, 14
self-similar, 4
snow flakes, 6
statistical self-similarity, 4
topological dimension, 4

37 / 37

	Introduction
	Fractals
	Basic Definitions
	Iterated Function Systems
	Percolation: Forrest Fires and the Like
	Fractal Flow

	Excercises
	Bibliography
	Index

