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Introduction I

Neural network
Source:https://en.wikipedia.org/wiki/Biological_neural_network

Gene Co-Expression
network

Source: Wikipedia

https://en.wikipedia.org/wiki/Gene_co-

expression_network

Cytoskeleton
Source: Wikipedia

https://de.wikipedia.org/wiki/Cytoskelett
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Introduction II

Figure 2 Network members (n = 89)
viewed by their connection through a
bar associated with gonorrhoea
acquisition. A pre�x to the unique
identi�er of ‘‘m’’ designates a male and
‘‘f’’ indicates a female sexual partner.
Bar patrons possessed signi�cantly
higher information centrality measures
compared to non-patrons (table 3).

Taken from: P De, A E Singh, T Wong, et al. doi: 10.1136/sti.2003.007187 2004 80: 280-285 Sex Transm Infect

Sexual network analysis of a gonorrhoea outbreak
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Apotosis

Taken from Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann DW, Kalthoff H, Krammer PH, Eils R (2004).

Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166, 839-851
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Gene Interaction Network
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Graph Models: Lattices I
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Graph Models: Lattices II

The Petersen is graph a where no pair of 
vertices are separated by more than two 
steps and the shortest circuit has length 
�ve.
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Graph Models: Lattices III

Cayley tree with degree 3 Hexagonal graph with degree 3
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Graph Models: Lattices IV
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Graph Models I

A graph consists of a nonempty set of points or vertices, and a set of edges that link
together the vertices. A graph may be of two many forms: directed or undirected.
In a directed graph the direction of any given edge is defined.
An edge in a graph that joins two vertices is said to be incident to both vertices. The
degree of a vertex is determined by the number of distinct edges that are incident to
the vertex.
Two edges in a graph are adjacent if they connect to the same vertex.
A loop is an edge that links a vertex to itself.
A path through a graph is a traversal of consecutive vertices along a sequence of
edges. A cycle is a path in which the initial vertex of the path is also the terminal
vertex of the path.

A graph G1 = (V1,E1) is a subgraph of G = (V ,E) if V1 ⊂ V and E ⊂ E1.

In general each edge may be associated with a direction and weight wi ∈ R.
In a directed graph we attach a direction to each edge eds . eds = (vi , vj ) means
that the edge es starts at node vi and ends at node vj .

In an undirected graph the order in which nodes are written does not matter

ens = (vi , vj ) = (vj , vi ) (1)

We allow for vi = vj . Such an edge is said to be a one-edged loop attached to vi .

It is possible to allow for more than one edge between nodes vi and vj .
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Graph Models II

If a graph contains neither multiple edges between pairs of nodes nor loops, then
the graph is called simple.
For a simple graph the number of edges is at most

Mmax =
N(N − 1)

2
(2)

In this case the graph is called fully connected.
The degree di is number of edges incident to a node vi . In a directed graph we
distingiush between the in-degree d INi and the out-degree dOUTi , ie., the
number of nodes ending on or starting from node vi .

We define the neighbourhood Γ(vi ) of node vi through

Γ(vi ) := {vj |vj ∈ V ∧ (vi , vj ) ∈ E} (3)

clearly the degree (in-degree) is also the size of the neighbourhood

di = |Γ(vi )| (4)
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Graph Models III

In all graphs we have ∑
i

di = 2M, M = |E | (5)

For directed graphs
∑

i di = M

The average degree d̄ of a graph is defined as

d̄ :=
1
N

N∑
i=1

di (6)

For directed graphs we have

1
N

N∑
i=1

d INi =
1
N

N∑
i=1

dOUTi (7)

The degree distribution is defined by

P(k) :=
1
N

N∑
i=1

δdi ,k fork = 0, 1, 2, ... (8)

The degree distribution summarizes information about the local environment of a
graph

PIN(k) can be different from POUT(k)
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Labeled (Coloured) Graphs I

Biological graphs are generally labeled with information. To each node we have an
associated vector of properties vi
(Potts model)
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Paths, Components and Trees I

A path from node vi to vj is a sequence of edges which can be traversed to reach
vj starting from vi .

In a directed graph paths cannot go against the direction of an edge.

Node vj is connect to node vi if there is a path from node vi to node vj . In an
undirected graph, if there is a path from node vi to node vj , then there is also a
path from vj to vi .

The adjacency matrix corresponding to the graph G is an NxN matrix A whose
entries aij are 0 if node i is not connect to j by an edge and 1 otherwise.

For a weighted graph we generalize this such that the entries with an edge have a
real number assigned.

If there is a path starting from and ending on node vi ∈ V , then this is called a
loop.
A set of k nodes C = {v1, ..., vk} where each node in C can be reached from
other nodes in C but not from any node outside of C is called a connected
component of size k.

For a simple graph the number of connected components K is given by

K ≥ N −M (9)

If there is more than one path between a pair of nodes vi , vj ∈ V , then the graph
contains closed paths or loops.
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Paths, Components and Trees II

In an undirected simple graph, if there is precisely one path between each pair of
nodes vi , vj ∈ V , then there cannot be any loop and the graph is called a tree.
If a graph consist of several components, each of which is a tree, the graph os
called a forrest.
A spanning tree T of a connected graph with nodes VT = VG and edges
ET ⊆ EG is a graph such that (VT ,ET ) is a tree.
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Distances and Diameter I

If two nodes are connected by a sequence of nodes and edges, then the distance
lij between them is defined as the number of edges that have to be traversed to
reach node vj from vi

lij := min{xij |xij is the length of a path from vi to vj along es ∈ E} (10)

If there is no path, then we set lij =∞
In general lij 6= lji

The diameter of a graph is defined as the maximum distance between two nodes
in the graph

D = max{lij |vi , vj ∈ V } (11)

For a disconnected graph we have D =∞. This can be made finite by defining D
to be the diameter of the largest connected component.

The clustering coefficient measures the probability that two nodes vj and vk ,
which are both neighbours of v − i ((vi , vj ), (vi , vk ∈ E) are themselves connect
by an edge (vj , vk ) ∈ E

ci :=
2ηi

di (di − 1)
fordi ≥ 2 (12)

where ηi is the number of edges among the nodes connected to vi .
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Distances and Diameter II

The average path length is defined as

l̄ :=
2

N(N − 1)

N∑
i=1

N∑
j=1

lij (13)

lii = 0 by definition.

The distribution of graph distances is defined as

λ(l) :=
2

N(N − 1)

N∑
i=1

N∑
j=1

δlij ,l l = 1, 2, .... (14)
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Random Graphs: Erdös-Renyi-Model I

Figure: Example: Erdös-Renyi Model, A p = 0.1, B p = 0.3, C p = 1

Graphical display of dependence structure between multiple interacting quantities
(expression levels of different genes).

Probabilistic semantics: Fits the stochastic nature of both the biological
processes and noisy experiments. Capable of handling noise and estimating the
confidence in the different features of the network.

Due to lack of data: Extract features that are pronounced in the data rather than
a single model that explains the data.
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Random Graphs: Erdös-Renyi-Model II

Random variable Xi = measured expression level of gene i represented by nodes.

Edges = regulatory interactions between genes.

Define the functional form of the conditional distributions (e.g. multinomial for
discrete variables, linear Gaussian for continuous variables).

Find the best network structure S
Given a network structure, find the best set of parameters for the conditional
distributions (the most probable structure/parameter vector given the data)
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Random Graphs: Erdös-Renyi-Model III

N = 10

N = 100

Erdös-Renyi Model
Fraction of the Largest Cluster

Figure: Example: Erdös-Renyi Model, A p = 0.1, B p = 0.3, C p = 1

Erdös-Rényi Model
Let G be a graph with N nodes. Any two nodes have an edge with probability p. Each
of the (N − 1)N/2 edges appears independently with probability p.
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Random Graphs: Erdös-Renyi-Model IV

The total number of edges is a random variable with expectation value

< n >= p[N(N − 1)/2]

If G0 is a graph with nodes V1,V2, ...,VN and n edges the probability of realizing
this graph is

P(G0) = pn(1− p)N(N−1)/2−n

A graph G1 = (V1,E1) is a subgraph of G = (V ,E) if V1 ⊆ V and E1 ⊆ E
Examples

cycles are closed loops of k edges such that every two consecutive edges and only
those have a common node

complete subgraphs (of order k) contains k nodes and all of the possible
k(k − 1)/2 edges

Question: Is there a critical probability that marks the appearance of arbitraray
subgraphs consisting of k nodes l edges?
In a random graph with connection probability p the degree ki of node i follows a
binomial distribution with parameters N − 1 and p

P(ki = k) = C k
N−1p

k (1− p)N−1−k (15)

There are C k
N−1 equivalent ways of selecting the k end points.
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Random Graphs: Erdös-Renyi-Model V

For i 6= j two different nodes, P(ki = k) and P(kj = k) are close to being to
independent random variables

Let Xk be the number of nodes with degree k. Our goal is to determine the
probability that Xk takes on a given value

P(Xk = r) (16)

< Xk >= NP(ki = k) = λk = NC k
N−1p

k (1− p)N−1−k (17)

Assume P(Xk = r) approaches a Poisson distribution

P(Xk = r) = eλk
λrk
r !

(18)

Thus the degree distribution of a random graph is a binomial distribution

P(k) = C k
N−1p

k (1− p)N−1−k (19)

For large N this can be replaced by a Poisson distribution

P(k) = e−pN
(pN)k

k!
= e<k>< k >k

k!
(20)
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Bayesian Networks I

Let G = (V ,E) be a directed acyclic graph. We assume that the vertices i ∈ V
(1 ≤ i ≤ n) represent for example genes and correspond to random variables xi . For
each yi we define a conditioned probability

P(xi |parent(xi )) = P(xi |Pa(xi )) (21)

and the joint probability distribution

P(x1, ..., xn) =
n∏

i=1

P(xi |Pa(xi )) (22)

We define a parameter θ to be the set of conditioned probabilities
From the graph shown in figure 3 representing the Bayesian network we can read off
the joint probability distribution

P(x1, ..., xn) = P(x1)P(x2)P(x3|x1, x2)P(x4|x2)P(x5|x3, x4) (23)

and θ is the set of local conditional probabilities.
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Bayesian Networks II

!" !#

!$ !%

!&

Figure: A simple Bayesian network
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Bayesian Networks III

Let x be distributed as x ∼ fθ(x) with parameter θ. Our aim is to estimate the
parameter θ, given that there are iid observations {xi} of the random variable x .
Example:
Let {xi} be a sequence of results of rolling a dice such that xi = 1 denotes head and
xi = 0 tail. The dice is unfair so that we have for the probability that the random
variable takes on the result xi = 1 is P(xi = 1) 6= 1/2. Define the parameter
θ = P(xi = 1). We need an estimate for θ. Of course, we know that we are dealing
with a binomial distribution (see section ??) and

P(x = 1) = p, P(x = 0) = q, q = 1− p (24)

How many successful realizations k do we have after we have tried n-times? This is
given by the binomial distribution (recall that the reverse question gives the negative
binomial distribution, see appendix).
Without any prior information we can use the maximum likelihood method to estimate
the parameter θ. Let x1, ..., xn denote the observations, with H + T = n where H is
the number of trails we have obtained head, and T the number of trails we have
obtained tail. Then
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Bayesian Networks IV

θ̂ = argmaxfθ(yi ) i = 1, ...n (25)

= argmaxθH(1− θ)T (26)

=
H

H + T
(27)

which corresponds to the empirical frequency of the sample for the event H. Even if
we have prior information in the sense that we have a previous set of experiments
where the number of heads was 5 and the number of tails was 10, we would obtain

θ̂ =
5 + H

5 + H + 10 + T
(28)

which is irrelevant if the number of total experiments n = T + H goes to infinity.
But now suppose we are not sure that we measured 5 heads and 10 tails and can only
tell that presumably the probability with which we obtained head was 1/4. For this
uncertainty we assume a prior distribution for theta P(θ)

P(θ) = β(5, 10) =
Γ(5)Γ(10)

Γ(5 + 10)
(29)

where we have assumed that the prior is distributed as a beta distribution
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Bayesian Networks V

β(p, q) ∼
Γ(5)Γ(10)

Γ(5 + 10)
=

∫ 1

0
xp−1(1− x)q−1dx (30)

Assume that we make new observations. We use the Bayesian law to compute the
posterior distribution

P(θ|x) =
P(x |θ)P(θ)

P(x)
(31)

=
P(x |θ)P(θ)∫
P(x |θ)P(θ)dθ

(32)

where P(x |θ) is the likelihood function. In the new experiment we find 50 heads and
50 tails so that we obtain for the likelihood function

P(x |θ) = θ50(1− θ)50 (33)

from which we obtain the posterior distribution

P(θ|x) =
θ59(1− θ)69∫
θ59(1− θ)69dθ

(34)
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Bayesian Networks VI

Note that the posterior function is the same as the prior function. In such a case we
call the distribution conjugate. Thus the beta distribution is the conjugate to the
binomial distribution.
The result of a Bayesian analysis is a posterior distribution and not a single value!
This distribution can be used to make predictions.
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Bayesian Networks for Gene Expression Data I

Graphic representation of a joint distribution over a set of random variables
A,B,C ,D,E .

P(A,B,C ,D, E) = P(A) ∗ P(B) ∗ P(C |A) ∗ P(D|A,B) ∗ P(E |D)

A B

C D

E

Figure: Nodes represent gene expression while edges encode the interactions (cf. inhibition,
activation)
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Bayesian Networks for Gene Expression Data II

Given a set of random variables X = (X1, ...,Xn), a Bayesian network is defined as a pair
BN = (S, θ), where

S is a directed acyclic graph (DAG), which is a graphical representation of the
conditional independencies between variables in X
θ is the set of parameters for the conditional probability distributions of these
variables.
In a Bayesian network, the probability of a state x = (x1, x2, ..., xn) is factored as

P(x) = P(x1|pa(x1))P(x2|pa(x2))...P(xn|pa(xn)),

where pa(x) denotes the parents of node x in the graph S

A Bayesian network should be a DAG (Direct Acyclic Graph).

Random variable Xi = measured expression level of gene i . Arcs = regulatory interactions
between genes.

However, there are lots regulatory networks having directed cycles.

Solve this by expanding into the time direction
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Bayesian Networks for Gene Expression Data III

A

B

A1 A2

B1 B2

Figure: Use DBN (Dynamic Bayesian Networks: BN with constraints on parents and children
nodes) for sequential gene expression data
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Bayesian Networks for Gene Expression Data IV

We are looking for a Bayesian network that is most probable given the data D (gene expression)

BN∗ = argmaxBN{P(BN|D)}
where

P(BN|D) =
P(D|BN)P(BN)

P(D)

There are many networks. An exhaustive search and scoring approach for the different models
will not work in practice (the number of networks increases super-exponentially, O(2n

2
) for

dynamic Bayesian networks)
Idea: Sample the networks such that we eventually have sampled the most probable networks
Monte Carlo

Recall detailed balance condition for Monte Carlo

P(BNold |D)P(BNold → BNnew |D) = P(BNnew |D)P(BNnew → BNold |D)

Let us look at

P(BN|D) =
P(D|BN)P(BN)

P(D)

Assume P(BN) is uniformly distributed (We could incorporate knowledge)

Choose next BN with probability P(BNnew)
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Bayesian Networks for Gene Expression Data V

Accept the new BN with the following Metropolis-Hastings accept/rejection criterion:

P = min
{
1,

P(BNnew|D)P(BNnew → BNold |D)

P(BNold|D)P(BNold → BNnew |D)

}
= min

{
1,

P(D|BNnew)P(BNnew)P(D)

P(D|BNold)P(BNold)P(D)

}
= min

{
1,

P(D|BNnew)P(BNnew)

P(D|BNold)P(BNold)

}
= min

{
1,

P(D|BNnew)

P(D|BNold)

}
Discrete model

Even though the amount of mRNA or protein levels, for example, can vary in a scale that
is most conveniently modeled as continuous, we can still model the system by assuming
that it operates with functionally discrete states

activated / not activated (2 states)
under expressed / normal / over expressed (3 states)

Discretization of data values can be used to compromise between the

averaging out of noise
accuracy of the model
complexity/accuracy of the model/parameter learning
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Bayesian Networks for Gene Expression Data VI

Qualitative models can be learned even when the quality of the data is not sufficient for
more accurate model classes

Let Nijk be the number of times we observe variable/node i in state k given parent node
configuration j

Summarize the number of total number of observations for variable i with parent node
configuration j,

Nij =

ri∑
k=1

Nijk

Since our states are discrete we use a multinomial distribution

the ML estimate of multinomial probabilities is obtained by the normalized counts

θ̂ijk =
Nijk

Ni j

A convenient prior distribution to choose for the parameters θ is given by the Dirichlet
distribution

(θij1, ..., θijri ) ∼ Dirichlet(αij1, ..., αijri
)
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Bayesian Networks for Gene Expression Data VII

The Dirichlet distribution has PDF

f (θij1, ...θijri ;αij1, ...αijri
) =

1
B(αij )

ri∏
i=1

θ
αijri

−1
ijri

with θijri ≥ 0,
∑

i θijri = 1 and hyperparameters αijri
≥ 0, αij =

∑
k αijri

The normalization constant, the Beta function, can be expressed using the gamma
function

B(αij ) =

∏ri
k=1 Γ(αijri

)

Γ(αij )

The convenience arises from the fact that the distribution is conjugate to the multinomial
distribution, i.e., if P(θ) is Dirichlet and P(X |θ) is multinomial, then P(θ|X ) is Dirichlet
as well

The multinomial distribution is given (for Nij =
∑

k Nijk ) by

f (Nij1, ...,Nijri
|Nij , θij1, ..., θijri ) =

Nij !

Nij1! · · ·Nijri
!
θ
Nij1
ij1 · · · θ

Nijri
ijri

and is the distribution of observations in ri classes if Nij observations are selected as
outcomes of independent selection from the classes with probabilities θijk , k = 1, ...ri

Structural Properties
In order to get reliable results we can focus on features that can be inferred
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Bayesian Networks for Gene Expression Data VIII

for example, we can define a feature, an indicator variable f with value 1 if and only
if the structure of the model contains a path between nodes A and B
Looking at a set of models S with a good fit we can approximate the posterior
probability of feature f by

P(f |D) =
∑
S

f (S)P(S|D)

With gene regulatory networks, one can look for only the most significant edges based on
the scoring

A Markov chain is defined over Bayesian nets so that it approaches a steady-state
distribution as it is being run, and the probabilities of the states (networks) correspond to
their posterior probability

Individual nets are created as states in the chain and after (assumed) convergence,
samples Si are taken

Posterior probability of an edge can then be approximated with

P(f (S)|D) ≈
1
n

n∑
i=1

f (Si )

37 / 83



Bayesian Networks for Gene Expression Data IX

To work out the Monte Carlo Method to generate networks we first have to compute
P(D|S)

P(D|S) =

∫
θ

P(D|θ, S)P(θ|S)dθ

= ...

=
n∏

i=1

qi∏
j=1

Γ(αij )

Γ(αij + Nij )

ri∏
k=1

Γ(αijk + Nijk )

Γ(αijk )

Monte Carlo moves: ADD, REMOVE, REVERSE edge in network

Algorithm 1 Gene Expression Network

1. TO BE DONE
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Weight Matrix Model I

A weight matrix model considers the interactions between all combinations of genes.
A weight matrix [1] consists of n × n weight values, each of which indicates the
influence of one specific gene on another. A positive value for wi,j models gene j
stimulating the expression of gene i . A negative value models repression, while a value
of zero indicates that gene j does not influence the transcription of gene i .
The expression state of a transcriptional regulatory network containing n genes (with
discrete states) is represented by a vector u(t). The net regulatory effect, of gene j on
gene i is the expression level of j , i.e., uj (t), times its regulatory influence on i which
is determined by the weight wi,j . The total regulatory input to i , i.e. ri (t), is derived
by summing over all the genes in the system

r(i) =
∑
j

wijuj (t) (35)

The response of each gene to the regulatory input in this model is calculated with a
dose-response function

xi (t + 1) = 1
1 + e−(αi ri (t)+βi )

(36)

where αi and βi are two gene specific constants that define the shape of the
dose-response curve for gene i . This assumes that each gene has a static
dose-dependent response to activating and repressing regulatory influences.
The constants can be incorporated into the weight matrix, replacing W with Z
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Weight Matrix Model II

zij = αiwij (37)

We further define a column weight zi0 = βi and u0(t) = 1. Thus the vector of net
regulations (r(t)) now is s(t)

si (t) =
∑
j

uj (t)zij (38)

and

xi (t + 1) = 1
1 + e−si (t)

(39)

yielding

ui (t + 1) = mix(t) = mi

1 + e−
∑

j zijuj (t)
(40)

here mi the maximal expression level for gene i used to get the real expression output
for i , i.e. ui (t + 1).
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Random Boolean Networks I

A Boolean network is one of the simplest model for the behaviour of genomic network.
Such network consists of n nodes (e.g. representing genes) which can either be
repressed or expressed (the node has state 0 or 1, respectively). The dynamics of the
network is determined by a list of n (Boolean) functions which each receive input from
k specified nodes. Every node has its own specific function, which can determine its
next state from the current states of all the input nodes.
A Boolean network [2, 3] G(V ,F ) is thus defined by a set of nodes V = {x1, ..., xN}
and a list of Boolean functions F = (f1, ..., fk ) corresponding to the edges. In these
models, gene expression is quantized to just two levels: ON and OFF (1 or 0). The
state of a node (gene) is completely determined by the values of other nodes at time t
by means of underlying logical Boolean functions. The model is represented in the
form of directed graphs. Each xi represents the state (expression) of gene i , where
xi = 1 represents the fact that gene i is expressed and xi = 0 means it is not expressed.
The time evolution of the network is described by

x(t + 1) = fi (xj1 (t), ..., xjki
(t)) (41)

where ki denotes the connectivity of the node i . For the average connectivity
we have

〈K〉 >=
1
N

N∑
i=1

ki . (42)
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Random Boolean Networks II

The list of Boolean functions F represents the rules of regulatory interactions between
genes. The tuple (G ,F ) is one realization. In the quenched model one realizations is
chosen at kept fixed for all times. In the annealed model a new realization is chosen at
random at very time step.
Any given gene transforms its inputs (regulatory factors that bind to it) into an
output, which is the state or expression of the gene itself. All genes are assumed to
update synchronously or asynchronously in accordance with the functions assigned to
them and this process is then repeated. Despite the simplicity of the model, they can
capture a number of essential features of real genomic networks.
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Random Boolean Networks III

3

5

4

2

1

11

8 2

7

10

6

14

3

1

5

13

15

16

12

9

4

Figure: A random network with 5 nodes and 10 edges and one with 16 nodes and 28 edges
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Random Boolean Networks IV

Asynchronous random boolean networks (ARBN) incorporate all the cases in which at
each time point a single node is selected in order to be updated. The node to be
updated can be chosen at random or according to a deterministic rule based:

clock scheme [4, 5],

cyclic scheme [6],

random independent scheme [7], and

random order scheme [7]

Consider the example shown in figure 7. The assignment of values to nodes made in
the truth table fully describes the state of the model at any given time. The change of
model state over time is fully defined by the functions in F . If we assign initial values
to the nodes, all further states are determined. Consider the time evolution of the
states as a trajectory. Since the number of possible states is finite, all trajectories
eventually end up in single steady states, or a cycle of steady states. In this context
we define an attractor of a trajectory as a single steady state, or a cycle at the end of
the trajectory. The basin of attraction for a specific attractor is a set of all trajectories
leading to it. States in gene networks are often characterized by stability in the sense
that small changes in value of a few nodes do not change the attractor.
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Random Boolean Networks V

bc a  b c
0  0  0
0  0  1
0  1  0
0  1  1
1  0  0
1  0  1
1  1  0
1  1  1  

a

a  b c
0  1  1
1  0  1
1  1  1
0  1  1
1  1  1
1  1  1
1  0  1
1  1  0  

t             t+1

Figure: A sample boolean network

At each time point t the system can be in one of the 2N possible states. We have 22k

possible logic functions per node which yield

possible nets = NF =

(
22kN!

(N − k)!

)N

(43)

The geometry of the network strongly influences the behaviour. We can distinguish
between

irregular networks
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Random Boolean Networks VI

regular networks like lattices where for example we have |xj1 (t), ..., xjki (t)| = 2d
neighbours on a simple hypercubic lattice

From the statistical mechanics point of view we have to specify an ensemble of the
coupling functions, i.e. each must be assigned a weight. For this we can consider the
following options

equal weight ensemble

magnetization biased

forcing functions

additive functions
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Random Boolean Networks VII

In the equal weight ensemble we assign every coupling function the same weight 1/NF .
In the magnetization bias situation the probability of occurrence of a coupling function
is p if the result is 0 and 1− p if the result is 1.
In the forcing function ensemble the value of the function is determined if one of the
arguments m ∈ {1, ..., k} takes on a predetermined value. For example xm = 0. The
value of the function is not determined if xm = 1.
And for the additive function ensemble we have

xi (t + 1) = Θ(fi (t)) (44)

and

f (t) = h +
N∑
j=1

cijxj (t) (45)

where h is a bias.
Now let us look at the response of the system if we change conditions. Let

Σ0 = {x1(0), ..., xN(0)} (46)

denote the starting state and

Σ̂0 = { ˆx1(0), ..., ˆxN(0)} (47)
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Random Boolean Networks VIII

another starting state which differs from Σ0 only in a few nodes. To describe the
difference we introduce the Hamming distance

D(t) =
N∑
i=1

(xi (t)− x̂(t))2 (48)

to describe the difference in the evolution of the network, given two initial conditions.
Clearly, if the network is such that any local discrepancy remains localized, then we do
expect the Hamming distance to remain finite in the thermodynamic limit. If, on the
other hand the discrepancy (or damage) can be propagated to almost every vertex,
then we expect the Hamming distance to diverge.
Assume that we are dealing with the uniform distribution for the coupling functions.
On average, a change of a single vertex will affect the argument of k functions. Hence
kD(0) functions are affected. Each of these is affected with a probability 1/2 so that
D(1) = kD(0) and in general

D(t) =

(
k

2

)t

D(0) (49)

We can thus distinguish three phases

chaotic phase for kc > 2

frozen for kc < 2
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Random Boolean Networks IX

critical for kc = 2

In the last case the state of the system will be dominated by fluctuations.
Let us now look at the case where

fi =

{
0 with probability p

1 with probability 1− p
(50)

For a given p and a given connectivity k we will have critical values

kc (p) and pc (k) (51)

Let

a(t) ≡ 1− D(t)/N (52)

be the probability that two vertices have the same value in Σt and Σ̂. The probability
that the arguments of the functions fi have the same value is given by

ρk = [a(t)]k (53)

The overlap is the same in the next time step if the arguments of the coupling
functions are identical. This occurs with probability ρk . The overlap is also the same if
the arguments of the coupling functions are also different, which occurs with
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Random Boolean Networks X

probability 1− ρk but the values are nevertheless the same, which occurs with
probability 2p(1− p). Altogether we have

a(t + 1) = 1− (1− ρk )2p(1− p) (54)

= 1−
1− [a(t)]k

kc
(55)

where we have used

kc =
1

2p(1− p)
(56)

pc =
1
2
±
√

1
4
−

1
k

(57)

Clearly the recursion relation 55 has a trivial fixpoint given by

a∗ = 1 (58)

What kind of fixpoint is this? To answer this question we perturb the fixpoint slightly
with δat . Then coming from below we have
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Random Boolean Networks XI

1− δat+1 = 1−
1− [1− δat ]k

kc
(59)

yielding

δat+1 ≈
k

kc
δat (60)

The trivial fixpoint is unstable if k/kc > 1. The resulting phase diagram can be seen
in figure 8.
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Random Boolean Networks XII
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Figure: The phase diagram is only shown for 0 ≤ p ≤ 0.5.
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Scale-Free Networks I

So far we could attach a definite scale to the network. We shall now investigate
networks that are scale free. For this we use the following connectivity distribution

P(k) =
1

ζ(γ)
k−γ , γ > 1 . (61)

with

ζ(γ) =
∞∑
k=1

k−γ (62)

being the Riemann Zeta-function.
The condition that P(k) is normed requires that γ > 1. For the first moment we
obtain

〈k〉 =
∞∑
k=1

kP(k) =

{
∞ if 1 < γ ≤ 2
ζ(γ − 1)/ζ(γ) if γ > 2

(63)

As done in the previous section we considered the case of the annealed model. Every
element receives k inputs with probability P(k)

a(t + 1) = G(a(t)) (64)
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Scale-Free Networks II

and recall that a(t) = 1− D(t)/N. The average probability that k = 1, 2, ...
controlling elements of the coupling function f are identical is

µ(a) =
∞∑
k=1

akP(k) . (65)

From this we can calculate the recursion function G

G(a) = 1− 2p(1− p)[1−
∞∑
k=1

akP(k)] (66)

For the fixpoint a∗ of eq 64 we can again analyse the stability by considering a∗ + δa∗.
a∗ is unstable iff

1 = lim
a↑1

dG(a)

da

= 2p(1− p)
∞∑
k=1

kP(k)

= 2p(1− p)〈k〉 . (67)
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Scale-Free Networks III

The phase transition is along this line because the fixpoint is stable for
lima↑1

dG(a)
da

< 1 and unstable for lima↑1
dG(a)
da

> 1.
We shall now analyse the trajectory through phase space in terms of limit cycles and
attractors. For this we switch to the quenched RBN. In this model the coupling
functions are independent of time. For every initial condition we can follow Σt which
surely will reach a state that was visited before. In this case it will cycle. Thus the
phase space Ω = 2N can be partitioned into cycles and attractors. An attractor can be
defined as set of points from the phase space At ≡ {Σt} ⊂ Ω which will be mapped
onto itself At+1 = At = A0. A basin of attraction of an attractor A0 is a subset of Ω
with

ex T <∞ : ΣT ∈ A0 (68)

Let k = N. Assume that we start with Σ0 and follow the trajectory. Let qt denote the
probability that the random walk is still not closed after t steps and let pt denote the
probability that the walk terminates (closes) after exactly t steps. If the trajectory is
open after t steps then t + 1 different points were visited. Hence there are t + 1
possibilities to terminate the walk in the next step and this happens with the
probability ρt = (t + 1)/|Ω|). Thus

pt+1 =
t + 1
|Ω|

qt . (69)

The probability that the walk after t + 1 steps is open is
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Scale-Free Networks IV

qt+1 = qt(1− ρt) = qt

(
1−

t + 1
|Ω|

)
(70)

with q0 = 1. Due to the fact that the phase space is growing exponentially we can
write

qt =
t∏

i=1

(
1−

i

|Ω|

)
≈

t∏
i=1

e−i/|Ω| (71)

= e−
∑

i i/|Ω| = e−t(t+1)/2|Ω| (72)

We can now calculate the average cycle length. Let P(L) denote the probability that a
given starting point is in the basin of attraction with cycle length L. The closing event
happens with equal probability so that

P(L) =

|Ω|∑
t=L

pt

t
(73)

and for the expectation value

〈L〉 ≈ |Ω|1/2 . (74)
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Scale-Free Networks V
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Figure: A random network with 5 nodes and 10 edges
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Figure: Generation of a simple small world random network
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Barabasi-Albert-Model I

Scale free graphs or networks can also arise from growth models. For this we need
preferential attachment

Algorithm 2 Barabasi-Albert-Model

1. Start with a disconnected set of m0 nodes
2. New nodes enter the network ate any time step.
3. For any new node m′ new edges are formed.
4. The m′ new edges connect the nodes with the old nodes. The latter ones are

extracted with a probability

P(ki ) =
ki∑
j kj

Assume that at every time step only one vertex enters. Then we have

n = m0 + t (75)

m′ =
1
2

n∑
j=1

kj = mt (76)
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Barabasi-Albert-Model II

Assume that verteices enter the graph at a constant rate. Assume too that the degree
is a continuous variable. The variation of the degree with time is given by

∂ki

∂t
= AΠ(ki ) = A

ki∑m0+t−1
j=1 kj

= A
ki

2mt
(77)

The constanr A is the change in connectivity in one time step, hence A = m. Initially
at t0, the initial degree is k(t0) = m. It follows that

∂ki

∂t
=

ki

2t
⇒ ki (t) = m

(
t

t0

)1/2
(78)

The probability P(ki < k) that a vertex has a degree k is

P(ki < k) = P

(
ti >

m2t

k2

)
(79)

Since vertices enter at a constant rate, their distribution is uniform in time

P(t) = const (80)

Thus ∫ m0+1

0
P(t)dt = 1⇒ P(t) =

1
m0 + t

(81)
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Barabasi-Albert-Model III

and hence

P

(
ti >

m2t

k2

)
= 1− P

(
ti ≤

m2t

k2

)
= 1−

m2t

k2(m0 + t)
(82)

It follows that

P(k) =
∂P(ki > k

∂k
=

2m2t

m0 + t

1
k3 (83)

The distribution floows a power law

P(k) ∼ k−γ , γ = 3 (84)

Hence the degree-distribution is scale-free.
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Cytoskeletal Networks I

abc
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Neural Networks I

The general goal is to create artificial neural networks (graphs) (ANN) that imitate
to some extend the capabilities of the human brain:

learning

generalization

adaptivity

fault tolerance

...

We want this for example for

pattern classification

function approximation

...
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Neural Networks II

Pioneering work was done by McCulloch and Pitts with the Perceptron [8, 9]. This
was extended by Minsky and Papert [10].
McCulloch and Pitts proposed a binary threshold model as a computational model for
an artificial neuron. Let x1, ..., xn be the input values and y = 0, 1 be the output. The
perceptron is defined by

y =

{
0,

∑
i xiwi ≤ b

1,
∑

i xiwi > b
. (85)

where w1, ...,wn are the synaptical weights that Rosenblat [9] introduced (see
Figure 11). This can be reformulated as

y = Θ(
n∑

j=1

wjxj − b) (86)

This generates an output of 1 if the sum is above a certain threshold.
Sometimes we include b in the sum and set w0 = −b and x0 to a constant input
x0 = 1.
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Neural Networks III

Figure: Perceptron

In this setting

positive weights correspond to excitatory synapses
negative weights correspond to inhibitory synapses

Clearly one can also use other activation function like

piecewise linear

sigmoid neuron

gaussian
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Neural Networks IV

Most often used is the sigmoid function (here the logistic function)

g(x) =
1

1 + e−βx
(87)

The above constructed node is then the basic unit in a network (graph) of nodes.
Thus the ANN’s are weighted directed graphs where

neuron ∼= node (88)

connection between neuron ∼= directed edge with weights (89)

Example: XOR

Figure: Perceptron XOR
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Neural Networks V

Connectionist models for gene regulation in the form of recurrent Hopfield [11]
networks have been proposed by Mjolsness and others [12–14] to describe regulatory
networks as directed graphs or matrices of interactions without restrictions on
connectivity. These continuous time networks model interphase expression of a cell
based on interaction weights that are free to take positive and negative real values.
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Neural Networks VI

Figure: Neural network
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Backpropagation Algorithm I

backpropagation [15]
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Gels I

Many systems exhibit a network structure (see figure ??). The mechanical properties
of such networks are often characteristic of a solid even though they being disordered
and may even be mostly liquid like. The structure of such a network is described by
the following structure parameters. First there is an elastically active network chain
between two crosslinks. Then there are dangling chains which are attached to the
network by a single point. The gel fraction includes all the material attached to the
network.
Let us look at the classical model of gelation proposed by Stockmayer and Flory
[16–18] for the sol gel transition. The model assumes monomers having f valences
which can bind (simple) to other monomers to form a network. Not all valences are
bound. We assume that each valence has probability of p(T , ci , ...) of being saturated.
Here p is considered to be function of temperature T , concentration c etc.
Take the generating function

F0 =
∑
n

ω
(0)
n (p)θn (90)

where ωn(p) is the probability that a randomly picked monomer (A) is part of a
cluster of n + 1 monomers. θ is a factor for every monomer in the cluster except for
the considered monomer.
Now

F0 = [1− p + pθF1(p, θ]f = [(1− p)u(p, θ)]f (91)
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Gels II

where F1 (with ω(1)
m being the function corresponding to the situation that monomer

B, attached to monomer A at the ν-th valence of A, is attached to m other monomers.
To make progress on the computation we assume that the f bonds of A are
un-correlated and that the network has no loops (Cayley-tree, see figure 14) (thus a
mean-field approximation). Hence

Figure: The Cayley tree is a tree with all nodes having the same connectivity, here q = 3 and
without loops
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Gels III

F1(p, θ) = [1− p + pθF1(p, θ)]f−1 = [(1− p)u(p, θ)]f−1 (92)

Solving this we find F0 and find all ω(0)
n

1
pθ(1− p)f−2

(
pθ

1− p
F1

)
=

(
1 +

pθ

1− p

)f−1
(93)

or

u − 1 = xuf−1 (94)

Thus the function u = 1 + F1pθ/(1− p) is a function of x = pθ(1− p)f−2 alone. One
can calculate the Taylor-expansion of u

u =
∞∑
n=0

[(f − 1)n]!xn

[(f − 2)n + 1]!n!
(95)

from which we find
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Gels IV

F1 = (1− p)f−1
∞∑
n=1

[(f − 1)n]!

[(f − 2)n + 1]!n!
xn−1 (96)

F0 = (1− p)f f
∞∑
n=1

[(f − 1)n]!

[(f − 2)n + 2]![n − 1]!
xn−1 (97)

(98)

To understand F1 we go back to equation 92 and write

F1 = w f−1 (99)
w − 1
pθ

= w f−1 − 1/θ (100)

Since w is a monotonically increasing function of θ we find that only one intersection
is possible. Assume θ = 1, then there are two cases. Case one

f − 1 < 1/p oder p <
1

f − 1
(101)

This mean that at monomer B the average number of bonds is
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Gels V

p(f − 1) < 1 (102)

The chain forming dies out ∑
ωn(p) = 1 (103)

and we only find finite connectivity. The system is in the sol phase.
If

f − 1 > 1/p or p(f − 1) > 1 (104)

the from generation to generation the number of bonds increase. The gel point in this
theory is thus

pc =
1

f − 1
(105)

We shall now investigate the behaviour of the system in the neighbourhood of the gel
point. To do so, we will expand various property function around

∆ = p − pc = p −
1

f − 1
. (106)

The gel fraction is given by
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Gels VI

G = 1− F0 = 2f
f − 1
f − 2

∆ ∼ ∆β , β = 1 (107)

Next we look at the polymerization index Nω

Nω =

∑
n nωn(p)∑
n ωn(p)

=
∂

∂θ
lnF0(θ = 1) (108)

We have

F ′0 = pf (1 + F ′1)F1 (109)

F ′1 = p(f − 1)(1 + F ′1)F
(f−2)/(f−1)
1 (110)

and for θ = 1, p < pc , i.e.,F0 = F1 = 1

Nω =
pf

1− p(f − 1)
≈

f

|∆|
∼ |∆|−γ (111)

The next observable we investigate is the cluster size distribution. With the help of
the Stirling formula we find from equation 98

ωn ∼ e−nq(∆n−3/2 ∼ n3/2e−n∆1/σ
(112)
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Gels VII

with

q(∆) = −(f − 2) ln
(
1−

f − 1
f − 2

∆

)
− ln[1 + (f − 1)∆] (113)

≈
1
2

(f − 1)3

f − 2
∆2 (114)

All in all we find the typical signature for a second-order phase transition with critical
exponents β, γ, σ, τ given by

G ∼ ∆β , β = 1 (115)

N ∼ |∆|−γ , γ = 1 (116)

ωn ∼ n−τ e−n|∆|1/σ , τ = 3/2, σ = 1/2 (117)
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Excercises I

Exercise 1: Erdös-Renyi-Model with fitness

Algorithm 3 Barabasi-Albert-Model

1. Start with a disconnected set of m vertices, each characterized by a constant ability
(fitness) ηi to attract new edges. Assume a distribution ρ(η)

2. As in the Barababsi-Albert-model there is growth since vertices enter the system
3. There is preferential attachment

Π(ki , ηi ) =
kiηi∑n
j=1 kjηj

Exercise 2: Linear Neurons
Work out the backpropagation algorithm for a linear function σ(z) = z.

Exercise 3: Show that the network remains invariant under multiplication of the
weights and biases with a constant factor c > 0.
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Index I

polymerization index, 73
additive functions, Boolean network, 46
adjacency matrix, 15
adjacent, 11
ANN) , 62
annealed model, Boolean network, 42
ARBN, asynchronous random boolean networks, 44
asynchronous random boolean networks, 44
attractor, 44, 55
average degree, 13
average path length, 18
backpropagation algorithm, 67
Barabasi-Albert-Model, 58
basin of attraction, 44, 55
Bayesain parameter estimation, 26
bayesian networks, 24, 30
beta distribution, 27
binomial distribution, 26
Cayley-tree, 69
closed path, 15
clustering coefficient, 17
Coloured graphs, 14
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Index II

complete subgraphs, 22
connected component, 15
cycle, 11
cycle of steady states, 44
cycles, 22
cytoskeletal networks, 61
degree distribution, 13
degree of a vertex, 11
diameter, 17
directed graph, 11
distribution of graph distances, 18
edge weight, 11
equal weight ensemble, Boolean network, 46
Erdös-Renyi-Model, 19
excitatory synapses, 64
forcing functions, Boolean network, 46
forrest, 16
fully connected graph, 12
gel, 68
gel point, 72
graph, 11
graph, average path length, 18
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Index III

graph, closed path, 15
graph, clustering coefficient, 17
graph, coloured, 14
graph, component, 15
graph, degree distribution, 13
graph, diameter, 17
graph, distance, 17
graph, distribution of graph distances, 18
graph, forrest, 16
graph, fully connected, 12
graph, labeled , 14
graph, loop, 15
graph, neighbourhood, 12
graph, paths, 15
graph, simple, 12
graph, spanning tree, 16
graph, tree, 15, 16
Hamming distance, 48
in-degree, 12
incident, 11
inhibitory synapses, 64
labeled graph, 14
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Index IV

limit cycles, 55
logistic function, 65
loop, 11, 15
magnetization biased, Boolean network, 46
maximum likelihood method, 26
neural networks, 62
neural networks, artificial, 62
out-degree, 12
parameter estimation, Bayesain, 26
Perceptron, 63
quenched model, Boolean network, 42
Random Boolean Networks, 41
RBN, 41
Riemann Zeta-function, 53
scale-free networks, 53
sigmoid neuron, 64
simple graph, 12
spanning tree, 16
steady state, 44
subgraph, 11, 22
tree, 16
undirected graph, 11
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Index V

vertices, 11
weight matrix model, 39
weight, edge, 11
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