THEORETISCHE PHYSIK IV: STATISTISCHE MECHANIK UND THERMODYNAMIK Problem Set No. 11

Due on: Friday, 11.7.08 in the practice groups

Exercise 11.1 (Bose-Einstein Condensation)

(10 points)

Consider an ideal Bose gas with total particle number N. The single particle energy levels are normalized such that $E_0 = 0, E_0 \le E_1 \le E_2 \le \ldots$

(a) Starting from the mean occupation number

$$\langle n_{\nu} \rangle = \frac{1}{e^{\beta(E_{\nu}-\mu)} - 1},$$

justify that $\mu \leq 0$. (3 points)

- (b) Now assume $\mu < 0$. What do we obtain for the mean occupation number $\langle n_{\nu} \rangle$ (for arbitrary ν) in the limit $T \to 0$? What kind of problem results for N? (3 points)
- (c) Now assume that for $T \to 0$ we always have $0 < -\beta \mu \ll 1$. What do we obtain in this case for the mean occupation number $\langle n_0 \rangle$ of the lowest-lying energy level? How is the problem of (b) solved therewith? (4 points)

Exercise 11.2 (Photon Gas)

(10 points)

In problem 6.2 we already dealt with the photon gas. Here we want to derive its equation of state. Photons are bosons with $z = e^{\beta\mu} = 1$, therefore the grandcanonical partition sum reads

$$\ln Z_{grk} = \frac{pV}{kT} = -\sum_{\epsilon} \ln\left(1 - e^{-\epsilon/kT}\right)$$

The photons are located in a cubic box of edge length L ($V = L^3$). The energy levels for the single photons are given by the relativistic relation $\epsilon = c |\mathbf{p}|$.

(a) In the case of large V one can replace the sum over the states by an integral. Show that in this case one has to do the following replacement (keep in mind that a photon has two spin states):

$$\sum_{\epsilon} \to \int \frac{8\pi V}{h^3 c^3} \epsilon^2 d\epsilon$$
 (5 points)

(b) Perform the integration and from this calculate the internal energy $\langle E \rangle$. Show that $pV = \frac{1}{3} \langle E \rangle$. *Hint:* $\int_0^\infty \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}$ (5 points)

Exercise 11.3 (Identical Particles)

(10 points)

Consider a system consisting of two identical non-interacting particles. Each particle can take on exactly three distinct energies $\epsilon_1 = -\epsilon, \epsilon_2 = 0, \epsilon_3 = +\epsilon$. The system is in thermal contact to a heat bath of temperature T. Calculate the canonical partition sum of the system and its average energy $\langle E \rangle$ as a function of T (or β) for the cases that both particles are

- (a) distinguishable
- (b) bosons
- (c) fermions

Sketch for the above three cases the corresponding $\langle E \rangle - T$ -diagrams.

Bonus Exercise 11.4 (Modified Fermi Gas)

(10 extra points)

Note: This exercise is optional. You may want to solve it to improve your score.

Consider an ideal Fermi Gas whose energy spectrum is given by $\epsilon \sim |\mathbf{p}|^s$ and which is contained in a box of volume V in a space of n dimensions.

- (a) Show that for this system $pV = \frac{s}{n} \langle E \rangle$. (6 points)
- (b) Express the average particle number $\langle N \rangle$ as a function of β, n, s and appropriate Fermi-Dirac functions $g_{\nu}(z)$. (2 points)
- (c) Express $\langle E \rangle$ as a function of $\langle N \rangle$ and T. (2 points)

Hints:

- The volume of a sphere in n dimensions with radius r is given by $V = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n$.
- The functions $g_{\nu}(z)$ are the so-called Fermi-Dirac functions $g_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_0^\infty dx \frac{x^{\nu-1}}{z^{-1}e^x+1}$