THEORETISCHE PHYSIK IV: STATISTISCHE MECHANIK UND THERMODYNAMIK

Problem Set No. 4

Due on: Friday, 16.5.08 in the practice groups

Exercise 4.1 (Entropy and Canonical Partition Sum)

(10 points)

(10 points)

The entropy of a system with N discrete states is defined as

$$S = -k \sum_{n=1}^{N} p_i \ln p_i.$$

 p_i is the probability for finding the system in state *i*.

Consider now a quantum mechanical system, whose states are (i) a group of g_1 equally likely states with energy ϵ_1 and (ii) a group of g_2 equally likely states with energy ϵ_2 .

(a) Show that the entropy of the system is given by

$$S = -k \left[p_1 \ln \left(\frac{p_1}{g_1} \right) + p_2 \ln \left(\frac{p_2}{g_2} \right) \right]$$

where p_1 and p_2 are, respectively, the probabilities of the system being in a state belonging to group 1 or to group 2 $(p_1 + p_2 = 1)$. (2 points)

(b) Assuming that the p_i are given by a canonical distribution, show that

$$S = k \left[\ln g_1 + \ln \left\{ 1 + (g_2/g_1)e^{-x} \right\} + \frac{x}{1 + (g_1/g_2)e^x} \right]$$

 $kT \ge 0$ (4 prime)

where $x = (\epsilon_2 - \epsilon_1)/kT > 0$. (4 points)

(c) Verify the foregoing expression for S by deriving it from the partition function of the system. (4 points)

Exercise 4.2 (*Zipper-Model for DNA*)

A model for the separation of a DNA double strand into its two single strands is the so-called "zipper" model. It is assumed that the double strand can only open up from one single side like a zipper. The zipper has N links. Every link can be either open or closed. The energy associated with an open link is ϵ , the energy associated with a closed link is 0. Each open link furthermore has a degree of degeneracy G denoting the number of possible spatial conformations for an open link. We assume that the zipper can only open up from the left and that for a link to open up, all links on the left hand side of it must be already open. The last (right) link is always closed.

- (a) Calculate the canonical partition sum of the system. (4 points)
- (b) Find the average number of open links in the limiting case $\frac{\epsilon}{kT} \gg 1$ for a given temperature T. (6 points)

Exercise 4.3 (Particles in a Magnetic Field)

When a particle with spin $\frac{1}{2}$ is inside a magnetic field H, its energy levels are split up in $-\mu H$ and $+\mu H$ with magnetic moment μ or $-\mu$ in the direction of H. Consider a system of N such particles in a magnetic field H at a temperature T. The particles do not interact with each other.

(a) Find the partition sum and the total magnetic moment $\langle M \rangle$ of the system. (5 points)

(b) Determine
$$\langle (M - \langle M \rangle)^2 \rangle$$
. (5 points)

(10 points)