Theoretische Physik IV: Statistische Mechanik und Thermodynamik

Problem Set No. 6

Due on: Friday, 6.6.08 in the practice groups

Exercise 6.1 (Ideal Gas)

On heating a room let the air pressure remain constant (and equal to the pressure of the outer air). For a room with a volume of 100 m^3 , calculate the change in the internal energy and the entropy of the air inside the room, upon heating the air from $0^{\circ}C$ to $20^{\circ}C$.

Hint: Consider the air as an ideal gas and use the extensitivity of the entropy. The entropy/mol of air at 1 atm and $0^{\circ}C$ is S = 196 J/(mol K).

Exercise 6.2 (Equation of State for a Photon Gas)

The classical ideal gas satisfies the well-known equation of state pV = NkT. For a gas of noninteracting photons however we have pV = E/3. Although we cannot derive this equation at this point of the lecture, we can derive the most important properties of this gas from the equation of state.

- (a) Assume that the energy density u = E/V only depends on temperature. Show that for the photon gas the Stefan-Boltzmann law $u = \sigma_0 T^4$ ($\sigma_0 = \text{const.}$) holds. (5 points) *Hint:* Consider $\frac{\partial E}{\partial V}|_T$ and use the Maxwell relation between $\frac{\partial S}{\partial V}|_T$ and $\frac{\partial P}{\partial T}|_V$ to obtain a differential equation for u(T).
- (b) Calculate the entropy of the photon gas. What is the exponent in the adiabatic equation $pV^{\gamma} = \text{const.}$? (5 points)

Exercise 6.3 (Van-der-Waals Gas)

(10 points)

(10 points)

(10 points)

In the lecture the van-der-Waals' equation of state was derived, which can be written in the following form

$$p(V) = \frac{NkT}{V - Nb} - a\frac{N^2}{V^2} \tag{1}$$

- (a) Determine the critical point (p_c, V_c) and the critical temperature T_c from the condition p'(V) = p''(V) = 0. (3 points)
- (b) On writing the equation of state in the dimensionless variables $\tau = T/T_c$, $\nu = V/V_c$ and $\pi = p/p_c$ one can eliminate the constants a and b. First express a and b by T_c , V_c and p_c and then rewrite the van-der-Waals equation of state in the new variables τ, ν and π . (3 points)
- (c) Use the equation of state (1) to calculate the free energy F, the entropy S and the internal energy U of the van-der-Waals gas. (The results for the ideal gas can be assumed to be known.) (4 points)