Theoretische Physik IV: Statistische Mechanik und Thermodynamik

Problem Set No. 8

Due on: Friday, 20.6.08 in the practice groups

Exercise 8.1 (Magnetization of a paramagnet)

The energy E of N spins \mathbf{s}_n in a magnetic field **H** is given by

$E = -\mu \sum_{n=1}^{N} \mathbf{H} \cdot \mathbf{s}_{n}$

- . Calculate the free energy $F=-k_BT\ln Z$ and the magnetization $M=-\left.\frac{\partial F}{\partial H}\right|_T$
 - (a) for *Isingspins*, i.e. $s_n = \pm 1$ with only two orientations with respect to the magnetic field, either parallel or antiparallel w.r.t. *H*. (4 points)
 - (b) for Heisenbergspins, i.e. s_n = (s_x, s_y, s_z)_n are three-dimensional vectors of length || s_n ||= 1. (6 points)

Exercise 8.2 (Potts-Model)

In this problem we investigate an often used and quite general model system: the Potts-Model. Consider N particles arranged in a row. We identify particle 1 with particle N + 1. Each particle can take one out of p different states, which are denoted by $\nu = 1, \ldots, p$. The interaction energy of adjacent particles is -J < 0, if both particles are in the same state, 0 otherwise. The Hamiltonian of the system is given by

$$H(\nu_1,\ldots,\nu_N) = -J\sum_{j=1}^N \delta_{\nu_j,\nu_{j+1}}$$

- (a) Determine the canonical partition sum of the system by means of the transfer matrix. (6 points)
- (b) Calculate the internal energy U(T) per particle in the thermodynamic limit $N \to \infty$. (3 points)
- (c) Discuss the behaviour of the system both for high and low temperatures. (1 point)

Exercise 8.3 (Ising-Band)

(10 points)

Consider two one-dimensional, ferromagnetic closed Ising chains of length N, which are arranged parallel and coupled (see figure). The Hamiltonian of the system is

$$H(\mathbf{s}_1,\ldots,\mathbf{s}_N) = -J_1 \sum_{j=1}^N (s_{j,1}s_{j+1,1} + s_{j,2}s_{j+1,2}) - J_2 \sum_{j=1}^N s_{j,1}s_{j,2}, \qquad J_1 > 0, J_2 > 0$$

Here, $\mathbf{s}_j = (s_{j,1}, s_{j,2}) \in \{+1, -1\}^2$ denotes the two-dimensional vector of the *j*th spins of the first and second chain. Let $\mathbf{s}_{N+1} = \mathbf{s}_1$.

(10 points)

(10 points)

(a) Show that the canonical partition sum can be written as

$$Z_N = \operatorname{Tr} T^N$$

where $T \in \mathbb{R}^{4 \times 4}$ is an appropriate transfer matrix of the system. (8 points)

(b) Calculate the free energy F per particle in the thermodynamic limit $N \to \infty$ (2 points)

Hint: It might be useful to use a computer algebra program for determination of the eigenvalues of T!.